3,858 research outputs found

    Resource Management Algorithms for Computing Hardware Design and Operations: From Circuits to Systems

    Get PDF
    The complexity of computation hardware has increased at an unprecedented rate for the last few decades. On the computer chip level, we have entered the era of multi/many-core processors made of billions of transistors. With transistor budget of this scale, many functions are integrated into a single chip. As such, chips today consist of many heterogeneous cores with intensive interaction among these cores. On the circuit level, with the end of Dennard scaling, continuously shrinking process technology has imposed a grand challenge on power density. The variation of circuit further exacerbated the problem by consuming a substantial time margin. On the system level, the rise of Warehouse Scale Computers and Data Centers have put resource management into new perspective. The ability of dynamically provision computation resource in these gigantic systems is crucial to their performance. In this thesis, three different resource management algorithms are discussed. The first algorithm assigns adaptivity resource to circuit blocks with a constraint on the overhead. The adaptivity improves resilience of the circuit to variation in a cost-effective way. The second algorithm manages the link bandwidth resource in application specific Networks-on-Chip. Quality-of-Service is guaranteed for time-critical traffic in the algorithm with an emphasis on power. The third algorithm manages the computation resource of the data center with precaution on the ill states of the system. Q-learning is employed to meet the dynamic nature of the system and Linear Temporal Logic is leveraged as a tool to describe temporal constraints. All three algorithms are evaluated by various experiments. The experimental results are compared to several previous work and show the advantage of our methods

    Reliability and security in low power circuits and systems

    Get PDF
    With the massive deployment of mobile devices in sensitive areas such as healthcare and defense, hardware reliability and security have become hot research topics in recent years. These topics, although different in definition, are usually correlated. This dissertation offers an in-depth treatment on enhancing the reliability and security of low power circuits and systems. The first part of the dissertation deals with the reliability of sub-threshold designs, which use supply voltage lower than the threshold voltage (Vth) of transistors to reduce power. The exponential relationship between delay and Vth significantly jeopardizes their reliability due to process variation induced timing violations. In order to address this problem, this dissertation proposes a novel selective body biasing scheme. In the first work, the selective body biasing problem is formulated as a linearly constrained statistical optimization model, and the adaptive filtering concept is borrowed from the signal processing community to develop an efficient solution. However, since the adaptive filtering algorithm lacks theoretical justification and guaranteed convergence rate, in the second work, a new approach based on semi-infinite programming with incremental hypercubic sampling is proposed, which demonstrates better solution quality with shorter runtime. The second work deals with the security of low power crypto-processors, equipped with Random Dynamic Voltage Scaling (RDVS), in the presence of Correlation Power Analysis (CPA) attacks. This dissertation firstly demonstrates that the resistance of RDVS to CPA can be undermined by lowering power supply voltage. Then, an alarm circuit is proposed to resist this attack. However, the alarm circuit will lead to potential denial-of-service due to noise-triggered false alarms. A non-zero sum game model is then formulated and the Nash Equilibria is analyzed --Abstract, page iii

    Adaptive Integrated Circuit Design for Variation Resilience and Security

    Get PDF
    The past few decades witness the burgeoning development of integrated circuit in terms of process technology scaling. Along with the tremendous benefits coming from the scaling, challenges are also presented in various stages. During the design time, the complexity of developing a circuit with millions to billions of smaller size transistors is extended after the variations are taken into account. The difficulty of analyzing these nondeterministic properties makes the allocation scheme of redundant resource hardly work in a cost-efficient way. Besides fabrication variations, analog circuits are suffered from severe performance degradations owing to their physical attributes which are vulnerable to aging effects. As such, the post-silicon calibration approach gains increasing attentions to compensate the performance mismatch. For the user-end applications, additional system failures result from the pirated and counterfeited devices provided by the untrusted semiconductor supply chain. Again analog circuits show their weakness to this threat due to the shortage of piracy avoidance techniques. In this dissertation, we propose three adaptive integrated circuit designs to overcome these challenges respectively. The first one investigates the variability-aware gate implementation with the consideration of the overhead control of adaptivity assignment. This design improves the variation resilience typically for digital circuits while optimizing the power consumption and timing yield. The second design is implemented as a self-validation system for the calibration of diverse analog circuits. The system is completely integrated on chip to enhance the convenience without external assistance. In the last design, a classic analog component is further studied to establish the configurable locking mechanism for analog circuits. The use of Satisfiability Modulo Theories addresses the difficulty of searching the unique unlocking pattern of non-Boolean variables

    Variability-driven module selection with joint design time optimization and post-silicon tuning

    Full text link
    Abstract—Increasing delay and power variation are significant chal-lenges to the designers as technology scales to the deep sub-micron (DSM) regime. Traditional module selection techniques in high level synthesis use worst case delay/power information to perform the optimization, and therefore may be too pessimistic such that extra resources are used to guarantee design requirements. Parametric yield, which is defined as the probability of the synthesized hardware meeting the performance/power constraints, can be used to guide design space exploration. The para-metric yield can be effectively improved by combining both design-time variation-aware optimization and post silicon tuning techniques (such as adaptive body biasing (ABB)). In this paper, we propose a module selection algorithm that combines design-time optimization with post-silicon tuning (using ABB) to maximize design yield. A variation-aware module selection algorithm based on efficient performance and power yield gradient computation is developed. The post silicon optimization is formulated as an efficient sequential conic program to determine the optimal body bias distribution, which in turn affects design-time module selection. The experiment results show that significant yield can be achieved compared to traditional worst-case driven module selection technique. To the best of our knowledge, this is the first variability-driven high level synthesis technique that considers post-silicon tuning during design time optimization. 1 I

    Proximity Optimization for Adaptive Circuit Design

    Get PDF
    The performance growth of conventional VLSI circuits is seriously hampered by various variation effects and the fundamental limit of chip power density. Adaptive circuit design is recognized as a power-efficient approach to tackling the variation challenge. However, it tends to entail large area overhead if not carefully designed. This work studies how to reduce the overhead by forming adaptivity blocks considering both timing and physical proximity among logic cells. The proximity optimization consists of timing and location aware cell clustering and incremental placement enforcing the clusters. Experiments are performed on the ICCAD 2014 benchmark circuits, which include case of near one million cells. The experiment results prove that during clustering, location proximity among logic cells are equally important as the timing proximity among logic cells. Compared to alternative methods, our approach achieves 25% to 75% area overhead reduction with an average of 0:6% wirelength overhead, while retains about the same timing yield and power consumption

    Performance of the LHCb vertex locator

    Get PDF
    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 ÎĽm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 ÎĽm for translations in the plane transverse to the beam. A primary vertex resolution of 13 ÎĽm in the transverse plane and 71 ÎĽm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 ÎĽm is achieved for particles with transverse momentum greater than 1 GeV/c

    Development of orientation preference maps in ferret visual cortex

    Get PDF

    Algorithmic techniques for nanometer VLSI design and manufacturing closure

    Get PDF
    As Very Large Scale Integration (VLSI) technology moves to the nanoscale regime, design and manufacturing closure becomes very difficult to achieve due to increasing chip and power density. Imperfections due to process, voltage and temperature variations aggravate the problem. Uncertainty in electrical characteristic of individual device and wire may cause significant performance deviations or even functional failures. These impose tremendous challenges to the continuation of Moore's law as well as the growth of semiconductor industry. Efforts are needed in both deterministic design stage and variation-aware design stage. This research proposes various innovative algorithms to address both stages for obtaining a design with high frequency, low power and high robustness. For deterministic optimizations, new buffer insertion and gate sizing techniques are proposed. For variation-aware optimizations, new lithography-driven and post-silicon tuning-driven design techniques are proposed. For buffer insertion, a new slew buffering formulation is presented and is proved to be NP-hard. Despite this, a highly efficient algorithm which runs > 90x faster than the best alternatives is proposed. The algorithm is also extended to handle continuous buffer locations and blockages. For gate sizing, a new algorithm is proposed to handle discrete gate library in contrast to unrealistic continuous gate library assumed by most existing algorithms. Our approach is a continuous solution guided dynamic programming approach, which integrates the high solution quality of dynamic programming with the short runtime of rounding continuous solution. For lithography-driven optimization, the problem of cell placement considering manufacturability is studied. Three algorithms are proposed to handle cell flipping and relocation. They are based on dynamic programming and graph theoretic approaches, and can provide different tradeoff between variation reduction and wire- length increase. For post-silicon tuning-driven optimization, the problem of unified adaptivity optimization on logical and clock signal tuning is studied, which enables us to significantly save resources. The new algorithm is based on a novel linear programming formulation which is solved by an advanced robust linear programming technique. The continuous solution is then discretized using binary search accelerated dynamic programming, batch based optimization, and Latin Hypercube sampling based fast simulation

    Resource Management Algorithms for Computing Hardware Design and Operations: From Circuits to Systems

    Get PDF
    The complexity of computation hardware has increased at an unprecedented rate for the last few decades. On the computer chip level, we have entered the era of multi/many-core processors made of billions of transistors. With transistor budget of this scale, many functions are integrated into a single chip. As such, chips today consist of many heterogeneous cores with intensive interaction among these cores. On the circuit level, with the end of Dennard scaling, continuously shrinking process technology has imposed a grand challenge on power density. The variation of circuit further exacerbated the problem by consuming a substantial time margin. On the system level, the rise of Warehouse Scale Computers and Data Centers have put resource management into new perspective. The ability of dynamically provision computation resource in these gigantic systems is crucial to their performance. In this thesis, three different resource management algorithms are discussed. The first algorithm assigns adaptivity resource to circuit blocks with a constraint on the overhead. The adaptivity improves resilience of the circuit to variation in a cost-effective way. The second algorithm manages the link bandwidth resource in application specific Networks-on-Chip. Quality-of-Service is guaranteed for time-critical traffic in the algorithm with an emphasis on power. The third algorithm manages the computation resource of the data center with precaution on the ill states of the system. Q-learning is employed to meet the dynamic nature of the system and Linear Temporal Logic is leveraged as a tool to describe temporal constraints. All three algorithms are evaluated by various experiments. The experimental results are compared to several previous work and show the advantage of our methods

    Degree-per-hour mode-matched micromachined silicon vibratory gyroscopes

    Get PDF
    The objective of this research dissertation is to design and implement two novel micromachined silicon vibratory gyroscopes, which attempt to incorporate all the necessary attributes of sub-deg/hr noise performance requirements in a single framework: large resonant mass, high drive-mode oscillation amplitudes, large device capacitance (coupled with optimized electronics), and high-Q resonant mode-matched operation. Mode-matching leverages the high-Q (mechanical gain) of the operating modes of the gyroscope and offers significant improvements in mechanical and electronic noise floor, sensitivity, and bias stability. The first micromachined silicon vibratory gyroscope presented in this work is the resonating star gyroscope (RSG): a novel Class-II shell-type structure which utilizes degenerate flexural modes. After an iterative cycle of design optimization, an RSG prototype was implemented using a multiple-shell approach on (111) SOI substrate. Experimental data indicates sub-5 deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 30,000 at 23ÂşC (in vacuum). The second micromachined silicon vibratory gyroscope presented in this work is the mode-matched tuning fork gyroscope (M2-TFG): a novel Class-I tuning fork structure which utilizes in-plane non-degenerate resonant flexural modes. Operated under vacuum, the M2-TFG represents the first reported high-Q perfectly mode-matched operation in Class-I vibratory microgyroscope. Experimental results of device implemented on (100) SOI substrate demonstrates sub-deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 50,000 at 23ÂşC. In an effort to increase capacitive aspect ratio, a new fabrication technology was developed that involved the selective deposition of doped-polysilicon inside the capacitive sensing gaps (SPD Process). By preserving the structural composition integrity of the flexural springs, it is possible to accurately predict the operating-mode frequencies while maintaining high-Q operation. Preliminary characterization of vacuum-packaged prototypes was performed. Initial results demonstrated high-Q mode-matched operation, excellent thermal stability, and sub-deg/hr Allan variance bias instability.Ph.D.Committee Chair: Dr. Farrokh Ayazi; Committee Member: Dr. Mark G. Allen; Committee Member: Dr. Oliver Brand; Committee Member: Dr. Paul A. Kohl; Committee Member: Dr. Thomas E. Michael
    • …
    corecore