19,615 research outputs found

    Dealing with Interference in Distributed Large-scale MIMO Systems: A Statistical Approach

    Full text link
    This paper considers the problem of interference control through the use of second-order statistics in massive MIMO multi-cell networks. We consider both the cases of co-located massive arrays and large-scale distributed antenna settings. We are interested in characterizing the low-rankness of users' channel covariance matrices, as such a property can be exploited towards improved channel estimation (so-called pilot decontamination) as well as interference rejection via spatial filtering. In previous work, it was shown that massive MIMO channel covariance matrices exhibit a useful finite rank property that can be modeled via the angular spread of multipath at a MIMO uniform linear array. This paper extends this result to more general settings including certain non-uniform arrays, and more surprisingly, to two dimensional distributed large scale arrays. In particular our model exhibits the dependence of the signal subspace's richness on the scattering radius around the user terminal, through a closed form expression. The applications of the low-rankness covariance property to channel estimation's denoising and low-complexity interference filtering are highlighted.Comment: 12 pages, 11 figures, to appear in IEEE Journal of Selected Topics in Signal Processin

    Electromagnetic Lens-focusing Antenna Enabled Massive MIMO: Performance Improvement and Cost Reduction

    Full text link
    Massive multiple-input multiple-output (MIMO) techniques have been recently advanced to tremendously improve the performance of wireless communication networks. However, the use of very large antenna arrays at the base stations (BSs) brings new issues, such as the significantly increased hardware and signal processing costs. In order to reap the enormous gain of massive MIMO and yet reduce its cost to an affordable level, this paper proposes a novel system design by integrating an electromagnetic (EM) lens with the large antenna array, termed the EM-lens enabled MIMO. The EM lens has the capability of focusing the power of an incident wave to a small area of the antenna array, while the location of the focal area varies with the angle of arrival (AoA) of the wave. Therefore, in practical scenarios where the arriving signals from geographically separated users have different AoAs, the EM-lens enabled system provides two new benefits, namely energy focusing and spatial interference rejection. By taking into account the effects of imperfect channel estimation via pilot-assisted training, in this paper we analytically show that the average received signal-to-noise ratio (SNR) in both the single-user and multiuser uplink transmissions can be strictly improved by the EM-lens enabled system. Furthermore, we demonstrate that the proposed design makes it possible to considerably reduce the hardware and signal processing costs with only slight degradations in performance. To this end, two complexity/cost reduction schemes are proposed, which are small-MIMO processing with parallel receiver filtering applied over subgroups of antennas to reduce the computational complexity, and channel covariance based antenna selection to reduce the required number of radio frequency (RF) chains. Numerical results are provided to corroborate our analysis.Comment: 30 pages, 9 figure
    • …
    corecore