62 research outputs found

    Digital background calibration algorithm and its FPGA implementation for timing mismatch correction of time-interleaved ADC

    Get PDF
    Sample time error can degrade the performance of time-interleaved analog to digital converters (TIADCs). A fully digital background algorithm is presented in this paper to estimate and correct the timing mismatch errors between four interleaved channels, together with its hardware implementation. The proposed algorithm provides low computation burden and high performance. It is based on the simplified representation of the coefficients of the Lagrange interpolator. Simulation results show that it can suppress error tones in all of the Nyquist band. Results show that, for a four-channel TIADC with 10-bit resolution, the proposed algorithm improves the signal to noise and distortion ratio (SNDR) and spurious-free dynamic range (SFDR) by 19.27 dB and 35.2 dB, respectively. This analysis was done for an input signal frequency of 0.09fs. In the case of an input signal frequency of 0.45fs, an improvement by 33.06 dB and 43.14 dB is respectively achieved in SNDR and SFDR. In addition to the simulation, the algorithm was implemented in hardware for real-time evaluation. The low computational burden of the algorithm allowed an FPGA implementation with a low logic resource usage and a high system clock speed (926.95 MHz for four channel algorithm implementation). Thus, the proposed architecture can be used as a post-processing algorithm in host processors for data acquisition systems to improve the performance of TIADC

    A Statistic-Based Calibration Method for TIADC System

    Get PDF
    Time-interleaved technique is widely used to increase the sampling rate of analog-to-digital converter (ADC). However, the channel mismatches degrade the performance of time-interleaved ADC (TIADC). Therefore, a statistic-based calibration method for TIADC is proposed in this paper. The average value of sampling points is utilized to calculate offset error, and the summation of sampling points is used to calculate gain error. After offset and gain error are obtained, they are calibrated by offset and gain adjustment elements in ADC. Timing skew is calibrated by an iterative method. The product of sampling points of two adjacent subchannels is used as a metric for calibration. The proposed method is employed to calibrate mismatches in a four-channel 5 GS/s TIADC system. Simulation results show that the proposed method can estimate mismatches accurately in a wide frequency range. It is also proved that an accurate estimation can be obtained even if the signal noise ratio (SNR) of input signal is 20 dB. Furthermore, the results obtained from a real four-channel 5 GS/s TIADC system demonstrate the effectiveness of the proposed method. We can see that the spectra spurs due to mismatches have been effectively eliminated after calibration

    Post Conversion Correction of Non-Linear Mismatches for Time Interleaved Analog-to-Digital Converters

    Get PDF
    Time Interleaved Analog-to-Digital Converters (TI-ADCs) utilize an architecture which enables conversion rates well beyond the capabilities of a single converter while preserving most or all of the other performance characteristics of the converters on which said architecture is based. Most of the approaches discussed here are independent of architecture; some solutions take advantage of specific architectures. Chapter 1 provides the problem formulation and reviews the errors found in ADCs as well as a brief literature review of available TI-ADC error correction solutions. Chapter 2 presents the methods and materials used in implementation as well as extend the state of the art for post conversion correction. Chapter 3 presents the simulation results of this work and Chapter 4 concludes the work. The contribution of this research is three fold: A new behavioral model was developed in SimulinkTM and MATLABTM to model and test linear and nonlinear mismatch errors emulating the performance data of actual converters. The details of this model are presented as well as the results of cumulant statistical calculations of the mismatch errors which is followed by the detailed explanation and performance evaluation of the extension developed in this research effort. Leading post conversion correction methods are presented and an extension with derivations is presented. It is shown that the data converter subsystem architecture developed is capable of realizing better performance of those currently reported in the literature while having a more efficient implementation

    Parallel-sampling ADC architecture for power-efficient broadband multi-carrier systems

    Get PDF

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Parametric analog signal amplification applied to nanoscale cmos wireless digital transceivers

    Get PDF
    Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e TecnologiaSignal amplification is required in almost every analog electronic system. However noise is also present, thus imposing limits to the overall circuit performance, e.g., on the sensitivity of the radio transceiver. This drawback has triggered a major research on the field, which has been producing several solutions to achieve amplification with minimum added noise. During the Fifties, an interesting out of mainstream path was followed which was based on variable reactance instead of resistance based amplifiers. The principle of these parametric circuits permits to achieve low noise amplifiers since the controlled variations of pure reactance elements is intrinsically noiseless. The amplification is based on a mixing effect which enables energy transfer from an AC pump source to other related signal frequencies. While the first implementations of these type of amplifiers were already available at that time, the discrete-time version only became visible more recently. This discrete-time version is a promising technique since it is well adapted to the mainstream nanoscale CMOS technology. The technique itself is based on the principle of changing the surface potential of the MOS device while maintaining the transistor gate in a floating state. In order words, the voltage amplification is achieved by changing the capacitance value while maintaining the total charge unchanged during an amplification phase. Since a parametric amplifier is not intrinsically dependent on the transconductance of the MOS transistor, it does not directly suffer from the intrinsic transconductance MOS gain issues verified in nanoscale MOS technologies. As a consequence, open-loop and opamp free structures can further emerge with this additional contribution. This thesis is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. The use of the latter is supported on the presentation of several circuits where the MOS Parametric Amplifier cell is well suited: small gain amplifier, comparator, discrete-time mixer and filter, and ADC. Relatively to the latter, a high speed time-interleaved pipeline ADC prototype is implemented in a,standard 130 nm CMOS digital technology from United Microelectronics Corporation (UMC). The ADC is fully based on parametric MOS amplification which means that one could achieve a compact and MOS-only implementation. Furthermore, any high speed opamp has not been used in the signal path, being all the amplification steps implemented with open-loop parametric MOS amplifiers. To the author’s knowledge, this is first reported pipeline ADC that extensively used the parametric amplification concept.Fundação para a Ciência e Tecnologia through the projects SPEED, LEADER and IMPAC

    Analysis and design of low-power data converters

    Get PDF
    In a large number of applications the signal processing is done exploiting both analog and digital signal processing techniques. In the past digital and analog circuits were made on separate chip in order to limit the interference and other side effects, but the actual trend is to realize the whole elaboration chain on a single System on Chip (SoC). This choice is driven by different reasons such as the reduction of power consumption, less silicon area occupation on the chip and also reliability and repeatability. Commonly a large area in a SoC is occupied by digital circuits, then, usually a CMOS short-channel technological processes optimized to realize digital circuits is chosen to maximize the performance of the Digital Signal Proccessor (DSP). Opposite, the short-channel technology nodes do not represent the best choice for analog circuits. But in a large number of applications, the signals which are treated have analog nature (microphone, speaker, antenna, accelerometers, biopotential, etc.), then the input and output interfaces of the processing chip are analog/mixed-signal conversion circuits. Therefore in a single integrated circuit (IC) both digital and analog circuits can be found. This gives advantages in term of total size, cost and power consumption of the SoC. The specific characteristics of CMOS short-channel processes such as: • Low breakdown voltage (BV) gives a power supply limit (about 1.2 V). • High threshold voltage VTH (compared with the available voltage supply) fixed in order to limit the leakage power consumption in digital applications (of the order of 0.35 / 0.4V), puts a limit on the voltage dynamic, and creates many problems with the stacked topologies. • Threshold voltage dependent on the channel length VTH = f(L) (short channel effects). • Low value of the output resistance of the MOS (r0) and gm limited by speed saturation, both causes contribute to achieving a low intrinsic gain gmr0 = 20 to 26dB. • Mismatch which brings offset effects on analog circuits. make the design of high performance analog circuits very difficult. Realizing lowpower circuits is fundamental in different contexts, and for different reasons: lowering the power dissipation gives the capability to reduce the batteries size in mobile devices (laptops, smartphones, cameras, measuring instruments, etc.), increase the life of remote sensing devices, satellites, space probes, also allows the reduction of the size and weight of the heat sink. The reduction of power dissipation allows the realization of implantable biomedical devices that do not damage biological tissue. For this reason, the analysis and design of low power and high precision analog circuits is important in order to obtain high performance in technological processes that are not optimized for such applications. Different ways can be taken to reduce the effect of the problems related to the technology: • Circuital level: a circuit-level intervention is possible to solve a specific problem of the circuit (i.e. Techniques for bandwidth expansion, increase the gain, power reduction, etc.). • Digital calibration: it is the highest level to intervene, and generally going to correct the non-ideal structure through a digital processing, these aims are based on models of specific errors of the structure. • Definition of new paradigms. This work has focused the attention on a very useful mixed-signal circuit: the pipeline ADC. The pipeline ADCs are widely used for their energy efficiency in high-precision applications where a resolution of about 10-16 bits and sampling rates above hundreds of Mega-samples per second (telecommunication, radar, etc.) are needed. An introduction on the theory of pipeline ADC, its state of the art and the principal non-idealities that affect the energy efficiency and the accuracy of this kind of data converters are reported in Chapter 1. Special consideration is put on low-voltage low-power ADCs. In particular, for ADCs implemented in deep submicron technology nodes side effects called short channel effects exist opposed to older technology nodes where undesired effects are not present. An overview of the short channel effects and their consequences on design, and also power consuption reduction techniques, with particular emphasis on the specific techniques adopted in pipelined ADC are reported in Chapter 2. Moreover, another way may be undertaken to increase the accuracy and the efficiency of an ADC, this way is the digital calibration. In Chapter 3 an overview on digital calibration techniques, and furthermore a new calibration technique based on Volterra kernels are reported. In some specific applications, such as software defined radios or micropower sensor, some circuits should be reconfigurable to be suitable for different radio standard or process signals with different charateristics. One of this building blocks is the ADC that should be able to reconfigure the resolution and conversion frequency. A reconfigurable voltage-scalable ADC pipeline capable to adapt its voltage supply starting from the required conversion frequency was developed, and the results are reported in Chapter 4. In Chapter 5, a pipeline ADC based on a novel paradigm for the feedback loop and its theory is described

    完全自動合成可能な低電力・広入力統計的フラッシュ型A/D変換回路

    Get PDF
    This work presents a fully synthesizable stochastic flash A/D converter (SFADC), which can operate at the supply voltage of 0.6V with power consumption as low as 1.5mW at the clock frequency of 250MHz. By employing the all-digital comparator, the SFADC can be described with Verilog netlist and synthesized according to a standard digital design flow. Cross-coupled dynamic comparator structure saves the overall power due to remarkable control of dynamic power consumption. In addition, the rail-to-rail characteristic of comparator and the proposed linearity enhancement technique based on SFADC are proposed, allowing us to design a wide input-range stochastic flash ADC.北九州市立大
    corecore