599 research outputs found

    Prototype of Fault Adaptive Embedded Software for Large-Scale Real-Time Systems

    Get PDF
    This paper describes a comprehensive prototype of large-scale fault adaptive embedded software developed for the proposed Fermilab BTeV high energy physics experiment. Lightweight self-optimizing agents embedded within Level 1 of the prototype are responsible for proactive and reactive monitoring and mitigation based on specified layers of competence. The agents are self-protecting, detecting cascading failures using a distributed approach. Adaptive, reconfigurable, and mobile objects for reliablility are designed to be self-configuring to adapt automatically to dynamically changing environments. These objects provide a self-healing layer with the ability to discover, diagnose, and react to discontinuities in real-time processing. A generic modeling environment was developed to facilitate design and implementation of hardware resource specifications, application data flow, and failure mitigation strategies. Level 1 of the planned BTeV trigger system alone will consist of 2500 DSPs, so the number of components and intractable fault scenarios involved make it impossible to design an `expert system' that applies traditional centralized mitigative strategies based on rules capturing every possible system state. Instead, a distributed reactive approach is implemented using the tools and methodologies developed by the Real-Time Embedded Systems group.Comment: 2nd Workshop on Engineering of Autonomic Systems (EASe), in the 12th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ECBS), Washington, DC, April, 200

    Actor Network Procedures as Psi-calculi for Security Ceremonies

    Full text link
    The actor network procedures of Pavlovic and Meadows are a recent graphical formalism developed for describing security ceremonies and for reasoning about their security properties. The present work studies the relations of the actor network procedures (ANP) to the recent psi-calculi framework. Psi-calculi is a parametric formalism where calculi like spi- or applied-pi are found as instances. Psi-calculi are operational and largely non-graphical, but have strong foundation based on the theory of nominal sets and process algebras. One purpose of the present work is to give a semantics to ANP through psi-calculi. Another aim was to give a graphical language for a psi-calculus instance for security ceremonies. At the same time, this work provides more insight into the details of the ANPs formalization and the graphical representation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    A survey of agent-oriented methodologies

    Get PDF
    This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey

    'Playing robot': an interactive sound installation in human-robot interaction design for new media art

    Get PDF
    In this study artistic human-robot interaction design is in- troduced as a means for scientific research and artistic inves- tigations. It serves as a methodology for situated cognition integrating empirical methodology and computational mod- eling, and is exemplified by the installation playing robot. Its artistic purpose is to aid to create and explore robots as a new medium for art and entertainment. We discuss the use of finite state machines to organize robots’ behavioral reac- tions to sensor data, and give a brief outlook on structured observation as a potential method for data collection

    DoMAIns: Domain-based Modeling for Ambient Intelligence

    Get PDF
    Ambient Intelligence and Smart Home Automation systems are currently emerging as feasible and ready to exploit solutions to support more intelligent features inside future and current homes. Thanks to increased availability of off-the-shelf components and to relatively easy to implement solutions we are experiencing a steady evolution of households, causing an ever-increasing users’ awareness of the capabilities of such innovative environments. To foster effective adoption of Smart Home Automation technologies in our home environments, traditional architectural and plant design must be complemented by sound design methodologies and tools, supporting the whole environment design cycle, including for example modeling, simulation and emulation, as well as, when feasible, formal model-checking and verification. Several research efforts have already addressed the design of expressive modeling tools, mostly based on Semantic Web technologies, as well as of suitable platforms for adding interoperation and rule-based intelligence to home environments. This paper proposes a new modeling methodology designed to fit the different phases of Intelligent Environments design, with a particular focus on validation and verification of the whole system. Carefully designed separation of modeled entities permits to exploit the DoMAIns framework during all phases of the environment design, from early abstract conception to the final in-field deployment. The DoMAIns design methodology is applied to a sample use case that involves comprehensive modeling and simulation of a Bank Security Booth, including the environment, the control algorithms, the automation devices and the user. Results show that the approach is feasible and that can easily handle different types of environment modeling, required in the different design phases, and for each of them it may support simulation, emulation, or other verification techniques

    Design-time formal verification for smart environments: an exploratory perspective

    Get PDF
    Smart environments (SmE) are richly integrated with multiple heterogeneous devices; they perform the operations in intelligent manner by considering the context and actions/behaviors of the users. Their major objective is to enable the environment to provide ease and comfort to the users. The reliance on these systems demands consistent behavior. The versatility of devices, user behavior and intricacy of communication complicate the modeling and verification of SmE's reliable behavior. Of the many available modeling and verification techniques, formal methods appear to be the most promising. Due to a large variety of implementation scenarios and support for conditional behavior/processing, the concept of SmE is applicable to diverse areas which calls for focused research. As a result, a number of modeling and verification techniques have been made available for designers. This paper explores and puts into perspective the modeling and verification techniques based on an extended literature survey. These techniques mainly focus on some specific aspects, with a few overlapping scenarios (such as user interaction, devices interaction and control, context awareness, etc.), which were of the interest to the researchers based on their specialized competencies. The techniques are categorized on the basis of various factors and formalisms considered for the modeling and verification and later analyzed. The results show that no surveyed technique maintains a holistic perspective; each technique is used for the modeling and verification of specific SmE aspects. The results further help the designers select appropriate modeling and verification techniques under given requirements and stress for more R&D effort into SmE modeling and verification researc

    A multi-paradigm, whole system view of health and social care for age-related macular degeneration

    No full text
    • …
    corecore