45 research outputs found

    A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials

    Get PDF
    Research paperSome electromagnetic materials exhibit, in a given frequency range, effective dielectric permittivity and/or magnetic permeability which are negative. In the literature, they are called negative index materials, left-handed materials or meta-materials. We propose in this paper a numerical method to solve a wave transmission between a classical dielectric material and a meta-material. The method we investigate can be considered as an alternative method compared to the method presented by the second author and co-workers. In particular, we shall use the abstract framework they developed to prove well-posedness of the exact problem. We recast this problem to fit later discretization by the staggered discontinuous Galerkin method developed by the first author and co-worker, a method which relies on introducing an auxiliary unknown. Convergence of the numerical method is proven, with the help of explicit inf-sup operators, and numerical examples are provided to show the efficiency of the method

    Generalized multiscale finite element methods for wave propagation in heterogeneous media

    Get PDF
    Numerical modeling of wave propagation in heterogeneous media is important in many applications. Due to the complex nature, direct numerical simulations on the fine grid are prohibitively expensive. It is therefore important to develop efficient and accurate methods that allow the use of coarse grids. In this paper, we present a multiscale finite element method for wave propagation on a coarse grid. The proposed method is based on the Generalized Multiscale Finite Element Method (GMsFEM). To construct multiscale basis functions, we start with two snapshot spaces in each coarse-grid block where one represents the degrees of freedom on the boundary and the other represents the degrees of freedom in the interior. We use local spectral problems to identify important modes in each snapshot space. These local spectral problems are different from each other and their formulations are based on the analysis. To our best knowledge, this is the first time where multiple snapshot spaces and multiple spectral problems are used and necessary for efficient computations. Using the dominant modes from local spectral problems, multiscale basis functions are constructed to represent the solution space locally within each coarse block. These multiscale basis functions are coupled via the symmetric interior penalty discontinuous Galerkin method which provides a block diagonal mass matrix, and, consequently, results in fast computations in an explicit time discretiza- tion. Our methods' stability and spectral convergence are rigorously analyzed. Numerical examples are presented to show our methods' performance. We also test oversampling strategies. In particular, we discuss how the modes from different snapshot spaces can affect the proposed methods' accuracy

    Staggered discontinuous Galerkin methods for the three-dimensional Maxwell's equations on Cartesian grids.

    Get PDF
    在本文中,我們為了三維空間的馬克士威方程組(Maxwell’s equation)制定和分析了一套新種類的交錯間斷伽遼金(discontinuous Galerkin)方法,同時考慮了時間依賴性和時間諧波的馬克士威方程組。我們用了空間離散上交錯笛卡兒網格,這種方法具有許多良好的性質。首先,我們的方法所得出的數值解保留了電磁能量,並自動符合了高斯定律的離散版本。第二,質量矩陣是對角矩陣,從而時間推進是顯式和非常有效的。第三,我們的方法是高階準確,最佳收斂性在這裏會被嚴格地證明。第四,基於笛卡兒網格,它也很容易被執行,並可視為是典型的Yee’s Scheme的以及四邊形的邊有限元的推廣。最後,超收斂結果也會在這裏被證明。在本文中,我們還提供了幾個數值結果驗證了理論的陳述。我們計算了時間依賴性和時間諧波的馬克士威方程組數值收斂結果。此外,我們計算時間諧波馬克士威方程組特徵值問題的數值特徵值,並與理論特徵值比較結果。最後,完美匹配層(Perfect Matching Layer)吸收邊界的問題也有實行其數值結果。We develop and analyze a new type of staggered discontinuous Galerkin methods for the three dimensional Maxwell’s equations in this paper. Both time-dependent and time-harmonic Maxwell’s equations are considered. The spatial discretization is based on staggered Cartesian grids which possess many good properties. First of all, our method has the advantages that the numerical solution preserves the electromagnetic energy and automatically fulfills a discrete version of the Gauss law. Second, the mass matrices are diagonal, thus time marching is explicit and is very efficient. Third, our method is high order accurate and the optimal order of convergence is rigorously proved. Fourth, it is also very easy to implement due to its Cartesian structure and can be regarded as a generalization of the classical Yee’s scheme as well as the quadrilateral edge finite elements. Lastly, a superconvergence result, that is the convergence rate is one order higher at interpolation nodes, is proved.In this paper, we also provide several numerical results to verify the theoretical statements. We compute the numerical convergence order using L2-norm and discrete-norm respectively for both the time-dependent and time-harmonic Maxwell’s equations. Also, we compute the numerical eigenvalues for the time-harmonic eigenvalue problem and compare the result with the theoretical eigenvalues. Lastly, applications to problems in unbounded domains with the use of PML are also presented.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Yu, Tang Fei.Thesis (M.Phil.)--Chinese University of Hong Kong, 2012.Includes bibliographical references (leaves 46-49).Abstracts also in Chinese.Chapter 1 --- Introduction and Model Problems --- p.1Chapter 2 --- Staggered DG Spaces --- p.4Chapter 2.1 --- Review on Gauss-Radau and Gaussisan points --- p.5Chapter 2.2 --- Basis functions --- p.6Chapter 2.3 --- Finite Elements space --- p.7Chapter 3 --- Method derivation --- p.14Chapter 3.1 --- Method --- p.14Chapter 3.2 --- Time discretization --- p.17Chapter 4 --- Energy conservation and Discrete Gauss law --- p.19Chapter 4.1 --- Energy conservation --- p.19Chapter 4.2 --- Discrete Gauss law --- p.22Chapter 5 --- Error analysis --- p.24Chapter 6 --- Numerical examples --- p.29Chapter 6.1 --- Convergence tests --- p.30Chapter 6.2 --- Diffraction by a perfectly conducting object --- p.30Chapter 6.3 --- Perfectly matched layers --- p.37Chapter 7 --- Time Harmonic Maxwell’s equations --- p.40Chapter 7.1 --- Model Problems --- p.40Chapter 7.2 --- Numerical examples --- p.40Chapter 7.2.1 --- Convergence tests --- p.41Chapter 7.2.2 --- Eigenvalues tests --- p.41Chapter 8 --- Conclusion --- p.45Bibliography --- p.4

    Adaptivity and Online Basis Construction for Generalized Multiscale Finite Element Methods

    Get PDF
    Many problems in application involve media with multiple scale, for example, in composite materials, porous media. These problems are usually computationally challenging since fine grid computation is extremely expensive. Therefore, one may need to develop a coarse grid model reduction for this type of problems. In this dissertation, we will consider a multiscale method called generalized multiscale finite element method (GMsFEM). GMsFEM follows the framework of multiscale finite element method. Instead of using one basis function per coarse grid node, GMsFEM uses several basis functions for one coarse grid node. Since the media is highly heterogeneous and may involves high contrast, having more than one basis function per node is important to reduce the error significantly. Due to the varying heterogeneity in the domain, we may require different numbers of basis functions in different regions. Then the question is how to determine the number of basis functions in each region. In this dissertation, we will discuss an adaptive enrichment algorithm for enriching basis functions for the regions with large error. We will consider two different types of basis function for enrichment. One is using the pre-computed offline basis functions. We call this method offline adaptive enrichment. The other method uses online constructed basis functions called online adaptive enrichment. In applications, non-conforming basis functions can give us more flexibility on gridding. The discontinuous Galerkin method also makes the mass matrix block diagonal, which enhances the computation speed in solving time-dependent problem with an explicit scheme. In this dissertation, we will discuss offline and online adaptive methods for the generalized multiscale discontinuous Galerkin method (GMsDGM). We will also discuss using GMsDGM for simulating wave propagation in heterogeneous media

    Two New Finite Element Schemes and Their Analysis for Modeling of Wave Propagation in Graphene

    Get PDF
    © 2020 The Author(s) In this paper, we investigate a system of governing equations for modeling wave propagation in graphene. Compared to our previous work (Yang et al., 2020), here we re-investigate the governing equations by eliminating two auxiliary unknowns from the original model. A totally new stability for the model is established for the first time. Since the finite element scheme proposed in Yang et al. (2020) is only first order in time, here we propose two new schemes with second order convergence in time for the simplified modeling equations. Discrete stabilities inheriting exactly the same form as the continuous stability are proved for both schemes. Convergence error estimates are also established for both schemes. Numerical results are presented to justify our theoretical analysis
    corecore