2,743 research outputs found

    Discerning the spatio-temporal disease patterns of surgically induced OA mouse models

    Get PDF
    Osteoarthritis (OA) is the most common cause of disability in ageing societies, with no effective therapies available to date. Two preclinical models are widely used to validate novel OA interventions (MCL-MM and DMM). Our aim is to discern disease dynamics in these models to provide a clear timeline in which various pathological changes occur. OA was surgically induced in mice by destabilisation of the medial meniscus. Analysis of OA progression revealed that the intensity and duration of chondrocyte loss and cartilage lesion formation were significantly different in MCL-MM vs DMM. Firstly, apoptosis was seen prior to week two and was narrowly restricted to the weight bearing area. Four weeks post injury the magnitude of apoptosis led to a 40–60% reduction of chondrocytes in the non-calcified zone. Secondly, the progression of cell loss preceded the structural changes of the cartilage spatio-temporally. Lastly, while proteoglycan loss was similar in both models, collagen type II degradation only occurred more prominently in MCL-MM. Dynamics of chondrocyte loss and lesion formation in preclinical models has important implications for validating new therapeutic strategies. Our work could be helpful in assessing the feasibility and expected response of the DMM- and the MCL-MM models to chondrocyte mediated therapies

    Multivariate Covariance Generalized Linear Models

    Full text link
    We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models (McGLMs), designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated measures and longitudinal structures, and the third involves a spatio-temporal analysis of rainfall data. The models take non-normality into account in the conventional way by means of a variance function, and the mean structure is modelled by means of a link function and a linear predictor. The models are fitted using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of different types of response variables and covariance structures, including multivariate extensions of repeated measures, time series, longitudinal, spatial and spatio-temporal structures.Comment: 21 pages, 5 figure

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    Rationale and design of the Clinical Evaluation of Magnetic Resonance Imaging in Coronary heart disease 2 trial (CE-MARC 2): a prospective, multicenter, randomized trial of diagnostic strategies in suspected coronary heart disease

    Get PDF
    Background: A number of investigative strategies exist for the diagnosis of coronary heart disease (CHD). Despite the widespread availability of noninvasive imaging, invasive angiography is commonly used early in the diagnostic pathway. Consequently, approximately 60% of angiograms reveal no evidence of obstructive coronary disease. Reducing unnecessary angiography has potential financial savings and avoids exposing the patient to unnecessary risk. There are no large-scale comparative effectiveness trials of the different diagnostic strategies recommended in international guidelines and none that have evaluated the safety and efficacy of cardiovascular magnetic resonance.<p></p> Trial Design: CE-MARC 2 is a prospective, multicenter, 3-arm parallel group, randomized controlled trial of patients with suspected CHD (pretest likelihood 10%-90%) requiring further investigation. A total of 1,200 patients will be randomized on a 2:2:1 basis to receive 3.0-T cardiovascular magnetic resonance–guided care, single-photon emission computed tomography–guided care (according to American College of Cardiology/American Heart Association appropriate-use criteria), or National Institute for Health and Care Excellence guidelines–based management. The primary (efficacy) end point is the occurrence of unnecessary angiography as defined by a normal (>0.8) invasive fractional flow reserve. Safety of each strategy will be assessed by 3-year major adverse cardiovascular event rates. Cost-effectiveness and health-related quality-of-life measures will be performed.<p></p> Conclusions: The CE-MARC 2 trial will provide comparative efficacy and safety evidence for 3 different strategies of investigating patients with suspected CHD, with the intension of reducing unnecessary invasive angiography rates. Evaluation of these management strategies has the potential to improve patient care, health-related quality of life, and the cost-effectiveness of CHD investigation

    Real-Time Magnetic Resonance Imaging

    Get PDF
    Real‐time magnetic resonance imaging (RT‐MRI) allows for imaging dynamic processes as they occur, without relying on any repetition or synchronization. This is made possible by modern MRI technology such as fast‐switching gradients and parallel imaging. It is compatible with many (but not all) MRI sequences, including spoiled gradient echo, balanced steady‐state free precession, and single‐shot rapid acquisition with relaxation enhancement. RT‐MRI has earned an important role in both diagnostic imaging and image guidance of invasive procedures. Its unique diagnostic value is prominent in areas of the body that undergo substantial and often irregular motion, such as the heart, gastrointestinal system, upper airway vocal tract, and joints. Its value in interventional procedure guidance is prominent for procedures that require multiple forms of soft‐tissue contrast, as well as flow information. In this review, we discuss the history of RT‐MRI, fundamental tradeoffs, enabling technology, established applications, and current trends
    corecore