558 research outputs found

    Local Regularization Assisted Orthogonal Least Squares Regression

    No full text
    A locally regularized orthogonal least squares (LROLS) algorithm is proposed for constructing parsimonious or sparse regression models that generalize well. By associating each orthogonal weight in the regression model with an individual regularization parameter, the ability for the orthogonal least squares (OLS) model selection to produce a very sparse model with good generalization performance is greatly enhanced. Furthermore, with the assistance of local regularization, when to terminate the model selection procedure becomes much clearer. This LROLS algorithm has computational advantages over the recently introduced relevance vector machine (RVM) method

    Model Selection for Support Vector Machine Classification

    Get PDF
    We address the problem of model selection for Support Vector Machine (SVM) classification. For fixed functional form of the kernel, model selection amounts to tuning kernel parameters and the slack penalty coefficient CC. We begin by reviewing a recently developed probabilistic framework for SVM classification. An extension to the case of SVMs with quadratic slack penalties is given and a simple approximation for the evidence is derived, which can be used as a criterion for model selection. We also derive the exact gradients of the evidence in terms of posterior averages and describe how they can be estimated numerically using Hybrid Monte Carlo techniques. Though computationally demanding, the resulting gradient ascent algorithm is a useful baseline tool for probabilistic SVM model selection, since it can locate maxima of the exact (unapproximated) evidence. We then perform extensive experiments on several benchmark data sets. The aim of these experiments is to compare the performance of probabilistic model selection criteria with alternatives based on estimates of the test error, namely the so-called ``span estimate'' and Wahba's Generalized Approximate Cross-Validation (GACV) error. We find that all the ``simple'' model criteria (Laplace evidence approximations, and the Span and GACV error estimates) exhibit multiple local optima with respect to the hyperparameters. While some of these give performance that is competitive with results from other approaches in the literature, a significant fraction lead to rather higher test errors. The results for the evidence gradient ascent method show that also the exact evidence exhibits local optima, but these give test errors which are much less variable and also consistently lower than for the simpler model selection criteria

    A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification

    Get PDF
    Introduction: Metabolomics is increasingly being used in the clinical setting for disease diagnosis, prognosis and risk prediction. Machine learning algorithms are particularly important in the construction of multivariate metabolite prediction. Historically, partial least squares (PLS) regression has been the gold standard for binary classification. Nonlinear machine learning methods such as random forests (RF), kernel support vector machines (SVM) and artificial neural networks (ANN) may be more suited to modelling possible nonlinear metabolite covariance, and thus provide better predictive models. Objectives: We hypothesise that for binary classification using metabolomics data, non-linear machine learning methods will provide superior generalised predictive ability when compared to linear alternatives, in particular when compared with the current gold standard PLS discriminant analysis. Methods: We compared the general predictive performance of eight archetypal machine learning algorithms across ten publicly available clinical metabolomics data sets. The algorithms were implemented in the Python programming language. All code and results have been made publicly available as Jupyter notebooks. Results: There was only marginal improvement in predictive ability for SVM and ANN over PLS across all data sets. RF performance was comparatively poor. The use of out-of-bag bootstrap confidence intervals provided a measure of uncertainty of model prediction such that the quality of metabolomics data was observed to be a bigger influence on generalised performance than model choice. Conclusion: The size of the data set, and choice of performance metric, had a greater influence on generalised predictive performance than the choice of machine learning algorithm

    Application of machine learning to agricultural soil data

    Get PDF
    Agriculture is a major sector in the Indian economy. One key advantage of classification and prediction of soil parameters is to save time of specialized technicians developing expensive chemical analysis. In this context, this PhD thesis has been developed in three stages: 1. Classification for soil data: we used chemical soil measurements to classify many relevant soil parameters: village-wise fertility indices; soil pH and type; soil nutrients, in order to recommend suitable amounts of fertilizers; and preferable crop. 2. Regression for generic data: we developed an experimental comparison of many regressors to a large collection of generic datasets selected from the University of California at Irving (UCI) machine learning repository. 3. Regression for soil data: We applied the regressors used in stage 2 to the soil datasets, developing a direct prediction of their numeric values. The accuracy of the prediction was evaluated for the ten soil problems, as an alternative to the prediction of the quantified values (classification) developed in stage 1

    Clinical microbiology with multi-view deep probabilistic models

    Get PDF
    Clinical microbiology is one of the critical topics of this century. Identification and discrimination of microorganisms is considered a global public health threat by the main international health organisations, such as World Health Organisation (WHO) or the European Centre for Disease Prevention and Control (ECDC). Rapid spread, high morbidity and mortality, as well as the economic burden associated with their treatment and control are the main causes of their impact. Discrimination of microorganisms is crucial for clinical applications, for instance, Clostridium difficile (C. diff ) increases the mortality and morbidity of healthcare-related infections. Furthermore, in the past two decades, other bacteria, including Klebsiella pneumoniae (K. pneumonia), have demonstrated a significant propensity to acquire antibiotic resistance mechanisms. Consequently, the use of an ineffective antibiotic may result in mortality. Machine Learning (ML) has the potential to be applied in the clinical microbiology field to automatise current methodologies and provide more efficient guided personalised treatments. However, microbiological data are challenging to exploit owing to the presence of a heterogeneous mix of data types, such as real-valued high-dimensional data, categorical indicators, multilabel epidemiological data, binary targets, or even time-series data representations. This problem, which in the field of ML is known as multi-view or multi-modal representation learning, has been studied in other application fields such as mental health monitoring or haematology. Multi-view learning combines different modalities or views representing the same data to extract richer insights and improve understanding. Each modality or view corresponds to a distinct encoding mechanism for the data, and this dissertation specifically addresses the issue of heterogeneity across multiple views. In the probabilistic ML field, the exploitation of multi-view learning is also known as Bayesian Factor Analysis (FA). Current solutions face limitations when handling high-dimensional data and non-linear associations. Recent research proposes deep probabilistic methods to learn hierarchical representations of the data, which can capture intricate non-linear relationships between features. However, some Deep Learning (DL) techniques rely on complicated representations, which can hinder the interpretation of the outcomes. In addition, some inference methods used in DL approaches can be computationally burdensome, which can hinder their practical application in real-world situations. Therefore, there is a demand for more interpretable, explainable, and computationally efficient techniques for highdimensional data. By combining multiple views representing the same information, such as genomic, proteomic, and epidemiologic data, multi-modal representation learning could provide a better understanding of the microbial world. Hence, in this dissertation, the development of two deep probabilistic models, that can handle current limitations in state-of-the-art of clinical microbiology, are proposed. Moreover, both models are also tested in two real scenarios regarding antibiotic resistance prediction in K. pneumoniae and automatic ribotyping of C. diff in collaboration with the Instituto de Investigación Sanitaria Gregorio Marañón (IISGM) and the Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS). The first presented algorithm is the Kernelised Sparse Semi-supervised Heterogeneous Interbattery Bayesian Analysis (SSHIBA). This algorithm uses a kernelised formulation to handle non-linear data relationships while providing compact representations through the automatic selection of relevant vectors. Additionally, it uses an Automatic Relevance Determination (ARD) over the kernel to determine the input feature relevance functionality. Then, it is tailored and applied to the microbiological laboratories of the IISGM and IRyCIS to predict antibiotic resistance in K. pneumoniae. To do so, specific kernels that handle Matrix-Assisted Laser Desorption Ionization (MALDI)-Time-Of-Flight (TOF) mass spectrometry of bacteria are used. Moreover, by exploiting the multi-modal learning between the spectra and epidemiological information, it outperforms other state-of-the-art algorithms. Presented results demonstrate the importance of heterogeneous models that can analyse epidemiological information and can automatically be adjusted for different data distributions. The implementation of this method in microbiological laboratories could significantly reduce the time required to obtain resistance results in 24-72 hours and, moreover, improve patient outcomes. The second algorithm is a hierarchical Variational AutoEncoder (VAE) for heterogeneous data using an explainable FA latent space, called FA-VAE. The FA-VAE model is built on the foundation of the successful KSSHIBA approach for dealing with semi-supervised heterogeneous multi-view problems. This approach further expands the range of data domains it can handle. With the ability to work with a wide range of data types, including multilabel, continuous, binary, categorical, and even image data, the FA-VAE model offers a versatile and powerful solution for real-world data sets, depending on the VAE architecture. Additionally, this model is adapted and used in the microbiological laboratory of IISGM, resulting in an innovative technique for automatic ribotyping of C. diff, using MALDI-TOF data. To the best of our knowledge, this is the first demonstration of using any kind of ML for C. diff ribotyping. Experiments have been conducted on strains of Hospital General Universitario Gregorio Marañón (HGUGM) to evaluate the viability of the proposed approach. The results have demonstrated high accuracy rates where KSSHIBA even achieved perfect accuracy in the first data collection. These models have also been tested in a real-life outbreak scenario at the HGUGM, where successful classification of all outbreak samples has been achieved by FAVAE. The presented results have not only shown high accuracy in predicting each strain’s ribotype but also revealed an explainable latent space. Furthermore, traditional ribotyping methods, which rely on PCR, required 7 days while FA-VAE has predicted equal results on the same day. This improvement has significantly reduced the time response by helping in the decision-making of isolating patients with hyper-virulent ribotypes of C. diff on the same day of infection. The promising results, obtained in a real outbreak, have provided a solid foundation for further advancements in the field. This study has been a crucial stepping stone towards realising the full potential of MALDI-TOF for bacterial ribotyping and advancing our ability to tackle bacterial outbreaks. In conclusion, this doctoral thesis has significantly contributed to the field of Bayesian FA by addressing its drawbacks in handling various data types through the creation of novel models, namely KSSHIBA and FA-VAE. Additionally, a comprehensive analysis of the limitations of automating laboratory procedures in the microbiology field has been carried out. The shown effectiveness of the newly developed models has been demonstrated through their successful implementation in critical problems, such as predicting antibiotic resistance and automating ribotyping. As a result, KSSHIBA and FA-VAE, both in terms of their technical and practical contributions, signify noteworthy progress both in the clinical and the Bayesian statistics fields. This dissertation opens up possibilities for future advancements in automating microbiological laboratories.La microbiología clínica es uno de los temas críticos de este siglo. La identificación y discriminación de microorganismos se considera una amenaza mundial para la salud pública por parte de las principales organizaciones internacionales de salud, como la Organización Mundial de la Salud (OMS) o el Centro Europeo para la Prevención y Control de Enfermedades (ECDC). La rápida propagación, alta morbilidad y mortalidad, así como la carga económica asociada con su tratamiento y control, son las principales causas de su impacto. La discriminación de microorganismos es crucial para aplicaciones clínicas, como el caso de Clostridium difficile (C. diff ), el cual aumenta la mortalidad y morbilidad de las infecciones relacionadas con la atención médica. Además, en las últimas dos décadas, otros tipos de bacterias, incluyendo Klebsiella pneumoniae (K. pneumonia), han demostrado una propensión significativa a adquirir mecanismos de resistencia a los antibióticos. En consecuencia, el uso de un antibiótico ineficaz puede resultar en un aumento de la mortalidad. El aprendizaje automático (ML) tiene el potencial de ser aplicado en el campo de la microbiología clínica para automatizar las metodologías actuales y proporcionar tratamientos personalizados más eficientes y guiados. Sin embargo, los datos microbiológicos son difíciles de explotar debido a la presencia de una mezcla heterogénea de tipos de datos, tales como datos reales de alta dimensionalidad, indicadores categóricos, datos epidemiológicos multietiqueta, objetivos binarios o incluso series temporales. Este problema, conocido en el campo del aprendizaje automático (ML) como aprendizaje multimodal o multivista, ha sido estudiado en otras áreas de aplicación, como en el monitoreo de la salud mental o la hematología. El aprendizaje multivista combina diferentes modalidades o vistas que representan los mismos datos para extraer conocimientos más ricos y mejorar la comprensión. Cada vista corresponde a un mecanismo de codificación distinto para los datos, y esta tesis aborda particularmente el problema de la heterogeneidad multivista. En el campo del aprendizaje automático probabilístico, la explotación del aprendizaje multivista también se conoce como Análisis de Factores (FA) Bayesianos. Las soluciones actuales enfrentan limitaciones al manejar datos de alta dimensionalidad y correlaciones no lineales. Investigaciones recientes proponen métodos probabilísticos profundos para aprender representaciones jerárquicas de los datos, que pueden capturar relaciones no lineales intrincadas entre características. Sin embargo, algunas técnicas de aprendizaje profundo (DL) se basan en representaciones complejas, dificultando así la interpretación de los resultados. Además, algunos métodos de inferencia utilizados en DL pueden ser computacionalmente costosos, obstaculizando su aplicación práctica. Por lo tanto, existe una demanda de técnicas más interpretables, explicables y computacionalmente eficientes para datos de alta dimensionalidad. Al combinar múltiples vistas que representan la misma información, como datos genómicos, proteómicos y epidemiológicos, el aprendizaje multimodal podría proporcionar una mejor comprensión del mundo microbiano. Dicho lo cual, en esta tesis se proponen el desarrollo de dos modelos probabilísticos profundos que pueden manejar las limitaciones actuales en el estado del arte de la microbiología clínica. Además, ambos modelos también se someten a prueba en dos escenarios reales relacionados con la predicción de resistencia a los antibióticos en K. pneumoniae y el ribotipado automático de C. diff en colaboración con el IISGM y el IRyCIS. El primer algoritmo presentado es Kernelised Sparse Semi-supervised Heterogeneous Interbattery Bayesian Analysis (SSHIBA). Este algoritmo utiliza una formulación kernelizada para manejar correlaciones no lineales proporcionando representaciones compactas a través de la selección automática de vectores relevantes. Además, utiliza un Automatic Relevance Determination (ARD) sobre el kernel para determinar la relevancia de las características de entrada. Luego, se adapta y aplica a los laboratorios microbiológicos del IISGM y IRyCIS para predecir la resistencia a antibióticos en K. pneumoniae. Para ello, se utilizan kernels específicos que manejan la espectrometría de masas Matrix-Assisted Laser Desorption Ionization (MALDI)-Time-Of-Flight (TOF) de bacterias. Además, al aprovechar el aprendizaje multimodal entre los espectros y la información epidemiológica, supera a otros algoritmos de última generación. Los resultados presentados demuestran la importancia de los modelos heterogéneos ya que pueden analizar la información epidemiológica y ajustarse automáticamente para diferentes distribuciones de datos. La implementación de este método en laboratorios microbiológicos podría reducir significativamente el tiempo requerido para obtener resultados de resistencia en 24-72 horas y, además, mejorar los resultados para los pacientes. El segundo algoritmo es un modelo jerárquico de Variational AutoEncoder (VAE) para datos heterogéneos que utiliza un espacio latente con un FA explicativo, llamado FA-VAE. El modelo FA-VAE se construye sobre la base del enfoque de KSSHIBA para tratar problemas semi-supervisados multivista. Esta propuesta amplía aún más el rango de dominios que puede manejar incluyendo multietiqueta, continuos, binarios, categóricos e incluso imágenes. De esta forma, el modelo FA-VAE ofrece una solución versátil y potente para conjuntos de datos realistas, dependiendo de la arquitectura del VAE. Además, este modelo es adaptado y utilizado en el laboratorio microbiológico del IISGM, lo que resulta en una técnica innovadora para el ribotipado automático de C. diff utilizando datos MALDI-TOF. Hasta donde sabemos, esta es la primera demostración del uso de cualquier tipo de ML para el ribotipado de C. diff. Se han realizado experimentos en cepas del Hospital General Universitario Gregorio Marañón (HGUGM) para evaluar la viabilidad de la técnica propuesta. Los resultados han demostrado altas tasas de precisión donde KSSHIBA incluso logró una clasificación perfecta en la primera colección de datos. Estos modelos también se han probado en un brote real en el HGUGM, donde FA-VAE logró clasificar con éxito todas las muestras del mismo. Los resultados presentados no solo han demostrado una alta precisión en la predicción del ribotipo de cada cepa, sino que también han revelado un espacio latente explicativo. Además, los métodos tradicionales de ribotipado, que dependen de PCR, requieren 7 días para obtener resultados mientras que FA-VAE ha predicho resultados correctos el mismo día del brote. Esta mejora ha reducido significativamente el tiempo de respuesta ayudando así en la toma de decisiones para aislar a los pacientes con ribotipos hipervirulentos de C. diff el mismo día de la infección. Los resultados prometedores, obtenidos en un brote real, han sentado las bases para nuevos avances en el campo. Este estudio ha sido un paso crucial hacia el despliegue del pleno potencial de MALDI-TOF para el ribotipado bacteriana avanzado así nuestra capacidad para abordar brotes bacterianos. En conclusión, esta tesis doctoral ha contribuido significativamente al campo del FA Bayesiano al abordar sus limitaciones en el manejo de tipos de datos heterogéneos a través de la creación de modelos noveles, concretamente, KSSHIBA y FA-VAE. Además, se ha llevado a cabo un análisis exhaustivo de las limitaciones de la automatización de procedimientos de laboratorio en el campo de la microbiología. La efectividad de los nuevos modelos, en este campo, se ha demostrado a través de su implementación exitosa en problemas críticos, como la predicción de resistencia a los antibióticos y la automatización del ribotipado. Como resultado, KSSHIBA y FAVAE, tanto en términos de sus contribuciones técnicas como prácticas, representan un progreso notable tanto en los campos clínicos como en la estadística Bayesiana. Esta disertación abre posibilidades para futuros avances en la automatización de laboratorios microbiológicos.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Juan José Murillo Fuentes.- Secretario: Jerónimo Arenas García.- Vocal: María de las Mercedes Marín Arriaz

    Agnostic Bayes

    Get PDF
    Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015L’apprentissage automatique correspond à la science de l’apprentissage à partir d’exemples. Des algorithmes basés sur cette approche sont aujourd’hui omniprésents. Bien qu’il y ait eu un progrès significatif, ce domaine présente des défis importants. Par exemple, simplement sélectionner la fonction qui correspond le mieux aux données observées n’offre aucune garantie statistiques sur les exemples qui n’ont pas encore été observées. Quelques théories sur l’apprentissage automatique offrent des façons d’aborder ce problème. Parmi ceux-ci, nous présentons la modélisation bayésienne de l’apprentissage automatique et l’approche PACbayésienne pour l’apprentissage automatique dans une vue unifiée pour mettre en évidence d’importantes similarités. Le résultat de cette analyse suggère que de considérer les réponses de l’ensemble des modèles plutôt qu’un seul correspond à un des éléments-clés pour obtenir une bonne performance de généralisation. Malheureusement, cette approche vient avec un coût de calcul élevé, et trouver de bonnes approximations est un sujet de recherche actif. Dans cette thèse, nous présentons une approche novatrice qui peut être appliquée avec un faible coût de calcul sur un large éventail de configurations d’apprentissage automatique. Pour atteindre cet objectif, nous appliquons la théorie de Bayes d’une manière différente de ce qui est conventionnellement fait pour l’apprentissage automatique. Spécifiquement, au lieu de chercher le vrai modèle à l’origine des données observées, nous cherchons le meilleur modèle selon une métrique donnée. Même si cette différence semble subtile, dans cette approche, nous ne faisons pas la supposition que le vrai modèle appartient à l’ensemble de modèles explorés. Par conséquent, nous disons que nous sommes agnostiques. Plusieurs expérimentations montrent un gain de généralisation significatif en utilisant cette approche d’ensemble de modèles durant la phase de validation croisée. De plus, cet algorithme est simple à programmer et n’ajoute pas un coût de calcul significatif à la recherche d’hyperparamètres conventionnels. Finalement, cet outil probabiliste peut également être utilisé comme un test statistique pour évaluer la qualité des algorithmes sur plusieurs ensembles de données d’apprentissage.Machine learning is the science of learning from examples. Algorithms based on this approach are now ubiquitous. While there has been significant progress, this field presents important challenges. Namely, simply selecting the function that best fits the observed data was shown to have no statistical guarantee on the examples that have not yet been observed. There are a few learning theories that suggest how to address this problem. Among these, we present the Bayesian modeling of machine learning and the PAC-Bayesian approach to machine learning in a unified view to highlight important similarities. The outcome of this analysis suggests that model averaging is one of the key elements to obtain a good generalization performance. Specifically, one should perform predictions based on the outcome of every model instead of simply the one that best fits the observed data. Unfortunately, this approach comes with a high computational cost problem, and finding good approximations is the subject of active research. In this thesis, we present an innovative approach that can be applied with a low computational cost on a wide range of machine learning setups. In order to achieve this, we apply the Bayes’ theory in a different way than what is conventionally done for machine learning. Specifically, instead of searching for the true model at the origin of the observed data, we search for the best model according to a given metric. While the difference seems subtle, in this approach, we do not assume that the true model belongs to the set of explored model. Hence, we say that we are agnostic. An extensive experimental setup shows a significant generalization performance gain when using this model averaging approach during the cross-validation phase. Moreover, this simple algorithm does not add a significant computational cost to the conventional search of hyperparameters. Finally, this probabilistic tool can also be used as a statistical significance test to evaluate the quality of learning algorithms on multiple datasets
    corecore