53,658 research outputs found

    A stable gene selection in microarray data analysis

    Get PDF
    BACKGROUND: Microarray data analysis is notorious for involving a huge number of genes compared to a relatively small number of samples. Gene selection is to detect the most significantly differentially expressed genes under different conditions, and it has been a central research focus. In general, a better gene selection method can improve the performance of classification significantly. One of the difficulties in gene selection is that the numbers of samples under different conditions vary a lot. RESULTS: Two novel gene selection methods are proposed in this paper, which are not affected by the unbalanced sample class sizes and do not assume any explicit statistical model on the gene expression values. They were evaluated on eight publicly available microarray datasets, using leave-one-out cross-validation and 5-fold cross-validation. The performance is measured by the classification accuracies using the top ranked genes based on the training datasets. CONCLUSION: The experimental results showed that the proposed gene selection methods are efficient, effective, and robust in identifying differentially expressed genes. Adopting the existing SVM-based and KNN-based classifiers, the selected genes by our proposed methods in general give more accurate classification results, typically when the sample class sizes in the training dataset are unbalanced

    Inverse Projection Representation and Category Contribution Rate for Robust Tumor Recognition

    Full text link
    Sparse representation based classification (SRC) methods have achieved remarkable results. SRC, however, still suffer from requiring enough training samples, insufficient use of test samples and instability of representation. In this paper, a stable inverse projection representation based classification (IPRC) is presented to tackle these problems by effectively using test samples. An IPR is firstly proposed and its feasibility and stability are analyzed. A classification criterion named category contribution rate is constructed to match the IPR and complete classification. Moreover, a statistical measure is introduced to quantify the stability of representation-based classification methods. Based on the IPRC technique, a robust tumor recognition framework is presented by interpreting microarray gene expression data, where a two-stage hybrid gene selection method is introduced to select informative genes. Finally, the functional analysis of candidate's pathogenicity-related genes is given. Extensive experiments on six public tumor microarray gene expression datasets demonstrate the proposed technique is competitive with state-of-the-art methods.Comment: 14 pages, 19 figures, 10 table

    Development of a simple artificial intelligence method to accurately subtype breast cancers based on gene expression barcodes

    Get PDF
    >Magister Scientiae - MScINTRODUCTION: Breast cancer is a highly heterogeneous disease. The complexity of achieving an accurate diagnosis and an effective treatment regimen lies within this heterogeneity. Subtypes of the disease are not simply molecular, i.e. hormone receptor over-expression or absence, but the tumour itself is heterogeneous in terms of tissue of origin, metastases, and histopathological variability. Accurate tumour classification vastly improves treatment decisions, patient outcomes and 5-year survival rates. Gene expression studies aided by transcriptomic technologies such as microarrays and next-generation sequencing (e.g. RNA-Sequencing) have aided oncology researcher and clinician understanding of the complex molecular portraits of malignant breast tumours. Mechanisms governing cancers, which include tumorigenesis, gene fusions, gene over-expression and suppression, cellular process and pathway involvementinvolvement, have been elucidated through comprehensive analyses of the cancer transcriptome. Over the past 20 years, gene expression signatures, discovered with both microarray and RNA-Seq have reached clinical and commercial application through the development of tests such as Mammaprint®, OncotypeDX®, and FoundationOne® CDx, all which focus on chemotherapy sensitivity, prediction of cancer recurrence, and tumour mutational level. The Gene Expression Barcode (GExB) algorithm was developed to allow for easy interpretation and integration of microarray data through data normalization with frozen RMA (fRMA) preprocessing and conversion of relative gene expression to a sequence of 1's and 0's. Unfortunately, the algorithm has not yet been developed for RNA-Seq data. However, implementation of the GExB with feature-selection would contribute to a machine-learning based robust breast cancer and subtype classifier. METHODOLOGY: For microarray data, we applied the GExB algorithm to generate barcodes for normal breast and breast tumour samples. A two-class classifier for malignancy was developed through feature-selection on barcoded samples by selecting for genes with 85% stable absence or presence within a tissue type, and differentially stable between tissues. A multi-class feature-selection method was employed to identify genes with variable expression in one subtype, but 80% stable absence or presence in all other subtypes, i.e. 80% in n-1 subtypes. For RNA-Seq data, a barcoding method needed to be developed which could mimic the GExB algorithm for microarray data. A z-score-to-barcode method was implemented and differential gene expression analysis with selection of the top 100 genes as informative features for classification purposes. The accuracy and discriminatory capability of both microarray-based gene signatures and the RNA-Seq-based gene signatures was assessed through unsupervised and supervised machine-learning algorithms, i.e., K-means and Hierarchical clustering, as well as binary and multi-class Support Vector Machine (SVM) implementations. RESULTS: The GExB-FS method for microarray data yielded an 85-probe and 346-probe informative set for two-class and multi-class classifiers, respectively. The two-class classifier predicted samples as either normal or malignant with 100% accuracy and the multi-class classifier predicted molecular subtype with 96.5% accuracy with SVM. Combining RNA-Seq DE analysis for feature-selection with the z-score-to-barcode method, resulted in a two-class classifier for malignancy, and a multi-class classifier for normal-from-healthy, normal-adjacent-tumour (from cancer patients), and breast tumour samples with 100% accuracy. Most notably, a normal-adjacent-tumour gene expression signature emerged, which differentiated it from normal breast tissues in healthy individuals. CONCLUSION: A potentially novel method for microarray and RNA-Seq data transformation, feature selection and classifier development was established. The universal application of the microarray signatures and validity of the z-score-to-barcode method was proven with 95% accurate classification of RNA-Seq barcoded samples with a microarray discovered gene expression signature. The results from this comprehensive study into the discovery of robust gene expression signatures holds immense potential for further R&F towards implementation at the clinical endpoint, and translation to simpler and cost-effective laboratory methods such as qtPCR-based tests

    Rule Learning and Swarm Intelligence Techniques for Feature Selection Optimization

    Get PDF
    In mathematics and computer science, solving an optimization problem is to find the best solution from all possible outcomes. In this dissertation work, two kinds of algorithms are considered to address the problems in Microarray Analysis, Numerical Optimization and Wireless Sensor Networks. In gene expression analysis and classification, feature selection is an important process of selecting the optimal subset of relevant features or useful data for further study and prediction. The main objective of feature selection is challenging due to the large search space, computational time, imbalanced samples, and quality of the selected drivers. It is necessary to construct a discriminative and stable feature selector that is robust to noises and outliers and able to select highly informative gene sets

    Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE

    Get PDF
    BACKGROUND: In class prediction problems using microarray data, gene selection is essential to improve the prediction accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVM-RFE) has become one of the leading methods and is being widely used. The SVM-based approach performs gene selection using the weight vector of the hyperplane constructed by the samples on the margin. However, the performance can be easily affected by noise and outliers, when it is applied to noisy, small sample size microarray data. RESULTS: In this paper, we propose a recursive gene selection method using the discriminant vector of the maximum margin criterion (MMC), which is a variant of classical linear discriminant analysis (LDA). To overcome the computational drawback of classical LDA and the problem of high dimensionality, we present efficient and stable algorithms for MMC-based RFE (MMC-RFE). The MMC-RFE algorithms naturally extend to multi-class cases. The performance of MMC-RFE was extensively compared with that of SVM-RFE using nine cancer microarray datasets, including four multi-class datasets. CONCLUSION: Our extensive comparison has demonstrated that for binary-class datasets MMC-RFE tends to show intermediate performance between hard-margin SVM-RFE and SVM-RFE with a properly chosen soft-margin parameter. Notably, MMC-RFE achieves significantly better performance with a smaller number of genes than SVM-RFE for multi-class datasets. The results suggest that MMC-RFE is less sensitive to noise and outliers due to the use of average margin, and thus may be useful for biomarker discovery from noisy data

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    Diverse correlation structures in gene expression data and their utility in improving statistical inference

    Full text link
    It is well known that correlations in microarray data represent a serious nuisance deteriorating the performance of gene selection procedures. This paper is intended to demonstrate that the correlation structure of microarray data provides a rich source of useful information. We discuss distinct correlation substructures revealed in microarray gene expression data by an appropriate ordering of genes. These substructures include stochastic proportionality of expression signals in a large percentage of all gene pairs, negative correlations hidden in ordered gene triples, and a long sequence of weakly dependent random variables associated with ordered pairs of genes. The reported striking regularities are of general biological interest and they also have far-reaching implications for theory and practice of statistical methods of microarray data analysis. We illustrate the latter point with a method for testing differential expression of nonoverlapping gene pairs. While designed for testing a different null hypothesis, this method provides an order of magnitude more accurate control of type 1 error rate compared to conventional methods of individual gene expression profiling. In addition, this method is robust to the technical noise. Quantitative inference of the correlation structure has the potential to extend the analysis of microarray data far beyond currently practiced methods.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS120 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stability and aggregation of ranked gene lists

    Get PDF
    Ranked gene lists are highly instable in the sense that similar measures of differential gene expression may yield very different rankings, and that a small change of the data set usually affects the obtained gene list considerably. Stability issues have long been under-considered in the literature, but they have grown to a hot topic in the last few years, perhaps as a consequence of the increasing skepticism on the reproducibility and clinical applicability of molecular research findings. In this article, we review existing approaches for the assessment of stability of ranked gene lists and the related problem of aggregation, give some practical recommendations, and warn against potential misuse of these methods. This overview is illustrated through an application to a recent leukemia data set using the freely available Bioconductor package GeneSelector
    • …
    corecore