1,077 research outputs found

    Towards a Mini-App for Smoothed Particle Hydrodynamics at Exascale

    Full text link
    The smoothed particle hydrodynamics (SPH) technique is a purely Lagrangian method, used in numerical simulations of fluids in astrophysics and computational fluid dynamics, among many other fields. SPH simulations with detailed physics represent computationally-demanding calculations. The parallelization of SPH codes is not trivial due to the absence of a structured grid. Additionally, the performance of the SPH codes can be, in general, adversely impacted by several factors, such as multiple time-stepping, long-range interactions, and/or boundary conditions. This work presents insights into the current performance and functionalities of three SPH codes: SPHYNX, ChaNGa, and SPH-flow. These codes are the starting point of an interdisciplinary co-design project, SPH-EXA, for the development of an Exascale-ready SPH mini-app. To gain such insights, a rotating square patch test was implemented as a common test simulation for the three SPH codes and analyzed on two modern HPC systems. Furthermore, to stress the differences with the codes stemming from the astrophysics community (SPHYNX and ChaNGa), an additional test case, the Evrard collapse, has also been carried out. This work extrapolates the common basic SPH features in the three codes for the purpose of consolidating them into a pure-SPH, Exascale-ready, optimized, mini-app. Moreover, the outcome of this serves as direct feedback to the parent codes, to improve their performance and overall scalability.Comment: 18 pages, 4 figures, 5 tables, 2018 IEEE International Conference on Cluster Computing proceedings for WRAp1

    An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth's mantle

    Get PDF
    Mantle convection is the fundamental physical process within earth's interior responsible for the thermal and geological evolution of the planet, including plate tectonics. The mantle is modeled as a viscous, incompressible, non-Newtonian fluid. The wide range of spatial scales, extreme variability and anisotropy in material properties, and severely nonlinear rheology have made global mantle convection modeling with realistic parameters prohibitive. Here we present a new implicit solver that exhibits optimal algorithmic performance and is capable of extreme scaling for hard PDE problems, such as mantle convection. To maximize accuracy and minimize runtime, the solver incorporates a number of advances, including aggressive multi-octree adaptivity, mixed continuous-discontinuous discretization, arbitrarily-high-order accuracy, hybrid spectral/geometric/algebraic multigrid, and novel Schur-complement preconditioning. These features present enormous challenges for extreme scalability. We demonstrate that---contrary to conventional wisdom---algorithmically optimal implicit solvers can be designed that scale out to 1.5 million cores for severely nonlinear, ill-conditioned, heterogeneous, and anisotropic PDEs

    Modelling solid/fluid interactions in hydrodynamic flows: a hybrid multiscale approach

    Get PDF
    With the advent of high performance computing (HPC), we can simulate nature at time and length scales that we could only dream of a few decades ago. Through the development of theory and numerical methods in the last fifty years, we have at our disposal a plethora of mathematical and computational tools to make powerful predictions about the world which surrounds us. From quantum methods like Density Functional Theory (DFT); going through atomistic methods such as Molecular Dynamics (MD) and Monte Carlo (MC), right up to more traditional macroscopic techniques based on Partial Differential Equations (PDEs) discretization like the Finite Element Method (FEM) or Finite Volume Method (FVM), which are respectively, the foundation of computational Structural Analysis and Computational Fluid Dynamics (CFD). Many modern scientific computing challenges in physics stem from combining appropriately two or more of these methods, in order to tackle problems that could not be solved otherwise using just one of them alone. This is known as multi-scale modeling, which aims to achieve a trade-off between computational cost and accuracy by combining two or more physical models at different scales. In this work, a multi-scale domain decomposition technique based on coupling MD and CFD methods, has been developed to make affordable the study of slip and friction, with atomistic detail, at length scales otherwise impossible by fully atomistic methods alone. A software framework has been developed to facilitate the execution of this particular kind of simulations on HPC clusters. This have been possible by employing the in-house developed CPL_LIBRARY software library, which provides key functionality to implement coupling through domain decomposition.Open Acces
    corecore