3,942 research outputs found

    Heavy subgraphs, stability and hamiltonicity

    Full text link
    Let GG be a graph. Adopting the terminology of Broersma et al. and \v{C}ada, respectively, we say that GG is 2-heavy if every induced claw (K1,3K_{1,3}) of GG contains two end-vertices each one has degree at least V(G)/2|V(G)|/2; and GG is o-heavy if every induced claw of GG contains two end-vertices with degree sum at least V(G)|V(G)| in GG. In this paper, we introduce a new concept, and say that GG is \emph{SS-c-heavy} if for a given graph SS and every induced subgraph GG' of GG isomorphic to SS and every maximal clique CC of GG', every non-trivial component of GCG'-C contains a vertex of degree at least V(G)/2|V(G)|/2 in GG. In terms of this concept, our original motivation that a theorem of Hu in 1999 can be stated as every 2-connected 2-heavy and NN-c-heavy graph is hamiltonian, where NN is the graph obtained from a triangle by adding three disjoint pendant edges. In this paper, we will characterize all connected graphs SS such that every 2-connected o-heavy and SS-c-heavy graph is hamiltonian. Our work results in a different proof of a stronger version of Hu's theorem. Furthermore, our main result improves or extends several previous results.Comment: 21 pages, 6 figures, finial version for publication in Discussiones Mathematicae Graph Theor

    Construction of Maximal Hypersurfaces with Boundary Conditions

    Full text link
    We construct maximal hypersurfaces with a Neumann boundary condition in Minkowski space via mean curvature flow. In doing this we give general conditions for long time existence of the flow with boundary conditions with assumptions on the curvature of a the Lorentz boundary manifold

    The typical structure of maximal triangle-free graphs

    Get PDF
    Recently, settling a question of Erd\H{o}s, Balogh and Pet\v{r}\'{i}\v{c}kov\'{a} showed that there are at most 2n2/8+o(n2)2^{n^2/8+o(n^2)} nn-vertex maximal triangle-free graphs, matching the previously known lower bound. Here we characterize the typical structure of maximal triangle-free graphs. We show that almost every maximal triangle-free graph GG admits a vertex partition XYX\cup Y such that G[X]G[X] is a perfect matching and YY is an independent set. Our proof uses the Ruzsa-Szemer\'{e}di removal lemma, the Erd\H{o}s-Simonovits stability theorem, and recent results of Balogh-Morris-Samotij and Saxton-Thomason on characterization of the structure of independent sets in hypergraphs. The proof also relies on a new bound on the number of maximal independent sets in triangle-free graphs with many vertex-disjoint P3P_3's, which is of independent interest.Comment: 17 page

    Upper bound theorem for odd-dimensional flag triangulations of manifolds

    Full text link
    We prove that among all flag triangulations of manifolds of odd dimension 2r-1 with sufficiently many vertices the unique maximizer of the entries of the f-, h-, g- and gamma-vector is the balanced join of r cycles. Our proof uses methods from extremal graph theory.Comment: Clarifications and new references, title has change

    Graph properties, graph limits and entropy

    Full text link
    We study the relation between the growth rate of a graph property and the entropy of the graph limits that arise from graphs with that property. In particular, for hereditary classes we obtain a new description of the colouring number, which by well-known results describes the rate of growth. We study also random graphs and their entropies. We show, for example, that if a hereditary property has a unique limiting graphon with maximal entropy, then a random graph with this property, selected uniformly at random from all such graphs with a given order, converges to this maximizing graphon as the order tends to infinity.Comment: 24 page
    corecore