887 research outputs found

    Pattern Formation and Organization of Epithelial Tissues

    Full text link
    Developmental biology is a study of how elaborate patterns, shapes, and functions emerge as an organism grows and develops its body plan. From the physics point of view this is very much a self-organization process. The genetic blueprint contained in the DNA does not explicitly encode shapes and patterns an animal ought to make as it develops from an embryo. Instead, the DNA encodes various proteins which, among other roles, specify how different cells function and interact with each other. Epithelial tissues, from which many organs are sculpted, serve as experimentally- and analytically-tractable systems to study patterning mechanisms in animal development. Despite extensive studies in the past decade, the mechanisms that shape epithelial tissues into functioning organs remain incompletely understood. This thesis summarizes various studies we have done on epithelial organization and patterning, both in abstract theory and in close contact with experiments. A novel mechanism to establish cellular left-right asymmetry based on planar polarity instabilities is discussed. Tissue chirality is often assumed to originate from handedness of biological molecules. Here we propose an alternative where it results from spontaneous symmetry breaking of planar polarity mechanisms. We show that planar cell polarity (PCP), a class of well-studied mechanisms that allows epithelia to spontaneously break rotational symmetry, is also generically capable of spontaneously breaking reflection symmetry. Our results provide a clear interpretation of many mutant phenotypes, especially those that result in incomplete inversion. To bridge theory and experiments, we develop quantitative methods to analyze fluorescence microscopy images. Included in this thesis are algorithms to selectively project intensities from a surface in z-stack images, analysis of cells forming short chain fragments, analysis of thick fluorescent bands using steerable ridge detector, and analysis of cell recoil in laser ablation experiments. These techniques, though developed in the context of zebrafish retina mosaic, are general and can be adapted to other systems. Finally we explore correlated noise in morphogenesis of fly pupa notum. Here we report unexpected correlation of noise in cell movements between left and right halves of developing notum, suggesting that feedback or other mechanisms might be present to counteract stochastic noise and maintain left-right symmetry.PHDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138800/1/hjeremy_1.pd

    Fractal image compression and the self-affinity assumption : a stochastic signal modelling perspective

    Get PDF
    Bibliography: p. 208-225.Fractal image compression is a comparatively new technique which has gained considerable attention in the popular technical press, and more recently in the research literature. The most significant advantages claimed are high reconstruction quality at low coding rates, rapid decoding, and "resolution independence" in the sense that an encoded image may be decoded at a higher resolution than the original. While many of the claims published in the popular technical press are clearly extravagant, it appears from the rapidly growing body of published research that fractal image compression is capable of performance comparable with that of other techniques enjoying the benefit of a considerably more robust theoretical foundation. . So called because of the similarities between the form of image representation and a mechanism widely used in generating deterministic fractal images, fractal compression represents an image by the parameters of a set of affine transforms on image blocks under which the image is approximately invariant. Although the conditions imposed on these transforms may be shown to be sufficient to guarantee that an approximation of the original image can be reconstructed, there is no obvious theoretical reason to expect this to represent an efficient representation for image coding purposes. The usual analogy with vector quantisation, in which each image is considered to be represented in terms of code vectors extracted from the image itself is instructive, but transforms the fundamental problem into one of understanding why this construction results in an efficient codebook. The signal property required for such a codebook to be effective, termed "self-affinity", is poorly understood. A stochastic signal model based examination of this property is the primary contribution of this dissertation. The most significant findings (subject to some important restrictions} are that "self-affinity" is not a natural consequence of common statistical assumptions but requires particular conditions which are inadequately characterised by second order statistics, and that "natural" images are only marginally "self-affine", to the extent that fractal image compression is effective, but not more so than comparable standard vector quantisation techniques

    Discrete Optimization in Early Vision - Model Tractability Versus Fidelity

    Get PDF
    Early vision is the process occurring before any semantic interpretation of an image takes place. Motion estimation, object segmentation and detection are all parts of early vision, but recognition is not. Some models in early vision are easy to perform inference with---they are tractable. Others describe the reality well---they have high fidelity. This thesis improves the tractability-fidelity trade-off of the current state of the art by introducing new discrete methods for image segmentation and other problems of early vision. The first part studies pseudo-boolean optimization, both from a theoretical perspective as well as a practical one by introducing new algorithms. The main result is the generalization of the roof duality concept to polynomials of higher degree than two. Another focus is parallelization; discrete optimization methods for multi-core processors, computer clusters, and graphical processing units are presented. Remaining in an image segmentation context, the second part studies parametric problems where a set of model parameters and a segmentation are estimated simultaneously. For a small number of parameters these problems can still be optimally solved. One application is an optimal method for solving the two-phase Mumford-Shah functional. The third part shifts the focus to curvature regularization---where the commonly used length and area penalization is replaced by curvature in two and three dimensions. These problems can be discretized over a mesh and special attention is given to the mesh geometry. Specifically, hexagonal meshes in the plane are compared to square ones and a method for generating adaptive meshes is introduced and evaluated. The framework is then extended to curvature regularization of surfaces. Finally, the thesis is concluded by three applications to early vision problems: cardiac MRI segmentation, image registration, and cell classification

    Ferroelectric liquid crystal spatial light modulators: devices and applications

    Get PDF

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings

    Perceptually lossless coding of medical images - from abstraction to reality

    Get PDF
    This work explores a novel vision model based coding approach to encode medical images at a perceptually lossless quality, within the framework of the JPEG 2000 coding engine. Perceptually lossless encoding offers the best of both worlds, delivering images free of visual distortions and at the same time providing significantly greater compression ratio gains over its information lossless counterparts. This is achieved through a visual pruning function, embedded with an advanced model of the human visual system to accurately identify and to efficiently remove visually irrelevant/insignificant information. In addition, it maintains bit-stream compliance with the JPEG 2000 coding framework and subsequently is compliant with the Digital Communications in Medicine standard (DICOM). Equally, the pruning function is applicable to other Discrete Wavelet Transform based image coders, e.g., The Set Partitioning in Hierarchical Trees. Further significant coding gains are exploited through an artificial edge segmentatio n algorithm and a novel arithmetic pruning algorithm. The coding effectiveness and qualitative consistency of the algorithm is evaluated through a double-blind subjective assessment with 31 medical experts, performed using a novel 2-staged forced choice assessment that was devised for medical experts, offering the benefits of greater robustness and accuracy in measuring subjective responses. The assessment showed that no differences of statistical significance were perceivable between the original images and the images encoded by the proposed coder

    Sublinear Computation Paradigm

    Get PDF
    This open access book gives an overview of cutting-edge work on a new paradigm called the “sublinear computation paradigm,” which was proposed in the large multiyear academic research project “Foundations of Innovative Algorithms for Big Data.” That project ran from October 2014 to March 2020, in Japan. To handle the unprecedented explosion of big data sets in research, industry, and other areas of society, there is an urgent need to develop novel methods and approaches for big data analysis. To meet this need, innovative changes in algorithm theory for big data are being pursued. For example, polynomial-time algorithms have thus far been regarded as “fast,” but if a quadratic-time algorithm is applied to a petabyte-scale or larger big data set, problems are encountered in terms of computational resources or running time. To deal with this critical computational and algorithmic bottleneck, linear, sublinear, and constant time algorithms are required. The sublinear computation paradigm is proposed here in order to support innovation in the big data era. A foundation of innovative algorithms has been created by developing computational procedures, data structures, and modelling techniques for big data. The project is organized into three teams that focus on sublinear algorithms, sublinear data structures, and sublinear modelling. The work has provided high-level academic research results of strong computational and algorithmic interest, which are presented in this book. The book consists of five parts: Part I, which consists of a single chapter on the concept of the sublinear computation paradigm; Parts II, III, and IV review results on sublinear algorithms, sublinear data structures, and sublinear modelling, respectively; Part V presents application results. The information presented here will inspire the researchers who work in the field of modern algorithms
    corecore