76 research outputs found

    Intelligent network intrusion detection using an evolutionary computation approach

    Get PDF
    With the enormous growth of users\u27 reliance on the Internet, the need for secure and reliable computer networks also increases. Availability of effective automatic tools for carrying out different types of network attacks raises the need for effective intrusion detection systems. Generally, a comprehensive defence mechanism consists of three phases, namely, preparation, detection and reaction. In the preparation phase, network administrators aim to find and fix security vulnerabilities (e.g., insecure protocol and vulnerable computer systems or firewalls), that can be exploited to launch attacks. Although the preparation phase increases the level of security in a network, this will never completely remove the threat of network attacks. A good security mechanism requires an Intrusion Detection System (IDS) in order to monitor security breaches when the prevention schemes in the preparation phase are bypassed. To be able to react to network attacks as fast as possible, an automatic detection system is of paramount importance. The later an attack is detected, the less time network administrators have to update their signatures and reconfigure their detection and remediation systems. An IDS is a tool for monitoring the system with the aim of detecting and alerting intrusive activities in networks. These tools are classified into two major categories of signature-based and anomaly-based. A signature-based IDS stores the signature of known attacks in a database and discovers occurrences of attacks by monitoring and comparing each communication in the network against the database of signatures. On the other hand, mechanisms that deploy anomaly detection have a model of normal behaviour of system and any significant deviation from this model is reported as anomaly. This thesis aims at addressing the major issues in the process of developing signature based IDSs. These are: i) their dependency on experts to create signatures, ii) the complexity of their models, iii) the inflexibility of their models, and iv) their inability to adapt to the changes in the real environment and detect new attacks. To meet the requirements of a good IDS, computational intelligence methods have attracted considerable interest from the research community. This thesis explores a solution to automatically generate compact rulesets for network intrusion detection utilising evolutionary computation techniques. The proposed framework is called ESR-NID (Evolving Statistical Rulesets for Network Intrusion Detection). Using an interval-based structure, this method can be deployed for any continuous-valued input data. Therefore, by choosing appropriate statistical measures (i.e. continuous-valued features) of network trafc as the input to ESRNID, it can effectively detect varied types of attacks since it is not dependent on the signatures of network packets. In ESR-NID, several innovations in the genetic algorithm were developed to keep the ruleset small. A two-stage evaluation component in the evolutionary process takes the cooperation of rules into consideration and results into very compact, easily understood rulesets. The effectiveness of this approach is evaluated against several sources of data for both detection of normal and abnormal behaviour. The results are found to be comparable to those achieved using other machine learning methods from both categories of GA-based and non-GA-based methods. One of the significant advantages of ESR-NIS is that it can be tailored to specific problem domains and the characteristics of the dataset by the use of different fitness and performance functions. This makes the system a more flexible model compared to other learning techniques. Additionally, an IDS must adapt itself to the changing environment with the least amount of configurations. ESR-NID uses an incremental learning approach as new flow of traffic become available. The incremental learning approach benefits from less required storage because it only keeps the generated rules in its database. This is in contrast to the infinitely growing size of repository of raw training data required for traditional learning

    Compressão eficiente de sequências biológicas usando uma rede neuronal

    Get PDF
    Background: The increasing production of genomic data has led to an intensified need for models that can cope efficiently with the lossless compression of biosequences. Important applications include long-term storage and compression-based data analysis. In the literature, only a few recent articles propose the use of neural networks for biosequence compression. However, they fall short when compared with specific DNA compression tools, such as GeCo2. This limitation is due to the absence of models specifically designed for DNA sequences. In this work, we combine the power of neural networks with specific DNA and amino acids models. For this purpose, we created GeCo3 and AC2, two new biosequence compressors. Both use a neural network for mixing the opinions of multiple specific models. Findings: We benchmark GeCo3 as a reference-free DNA compressor in five datasets, including a balanced and comprehensive dataset of DNA sequences, the Y-chromosome and human mitogenome, two compilations of archaeal and virus genomes, four whole genomes, and two collections of FASTQ data of a human virome and ancient DNA. GeCo3 achieves a solid improvement in compression over the previous version (GeCo2) of 2:4%, 7:1%, 6:1%, 5:8%, and 6:0%, respectively. As a reference-based DNA compressor, we benchmark GeCo3 in four datasets constituted by the pairwise compression of the chromosomes of the genomes of several primates. GeCo3 improves the compression in 12:4%, 11:7%, 10:8% and 10:1% over the state-of-the-art. The cost of this compression improvement is some additional computational time (1:7_ to 3:0_ slower than GeCo2). The RAM is constant, and the tool scales efficiently, independently from the sequence size. Overall, these values outperform the state-of-the-art. For AC2 the improvements and costs over AC are similar, which allows the tool to also outperform the state-of-the-art. Conclusions: The GeCo3 and AC2 are biosequence compressors with a neural network mixing approach, that provides additional gains over top specific biocompressors. The proposed mixing method is portable, requiring only the probabilities of the models as inputs, providing easy adaptation to other data compressors or compression-based data analysis tools. GeCo3 and AC2 are released under GPLv3 and are available for free download at https://github.com/cobilab/geco3 and https://github.com/cobilab/ac2.Contexto: O aumento da produção de dados genómicos levou a uma maior necessidade de modelos que possam lidar de forma eficiente com a compressão sem perdas de biosequências. Aplicações importantes incluem armazenamento de longo prazo e análise de dados baseada em compressão. Na literatura, apenas alguns artigos recentes propõem o uso de uma rede neuronal para compressão de biosequências. No entanto, os resultados ficam aquém quando comparados com ferramentas de compressão de ADN específicas, como o GeCo2. Essa limitação deve-se à ausência de modelos específicos para sequências de ADN. Neste trabalho, combinamos o poder de uma rede neuronal com modelos específicos de ADN e aminoácidos. Para isso, criámos o GeCo3 e o AC2, dois novos compressores de biosequências. Ambos usam uma rede neuronal para combinar as opiniões de vários modelos específicos. Resultados: Comparamos o GeCo3 como um compressor de ADN sem referência em cinco conjuntos de dados, incluindo um conjunto de dados balanceado de sequências de ADN, o cromossoma Y e o mitogenoma humano, duas compilações de genomas de arqueas e vírus, quatro genomas inteiros e duas coleções de dados FASTQ de um viroma humano e ADN antigo. O GeCo3 atinge uma melhoria sólida na compressão em relação à versão anterior (GeCo2) de 2,4%, 7,1%, 6,1%, 5,8% e 6,0%, respectivamente. Como um compressor de ADN baseado em referência, comparamos o GeCo3 em quatro conjuntos de dados constituídos pela compressão aos pares dos cromossomas dos genomas de vários primatas. O GeCo3 melhora a compressão em 12,4%, 11,7%, 10,8% e 10,1% em relação ao estado da arte. O custo desta melhoria de compressão é algum tempo computacional adicional (1,7 _ a 3,0 _ mais lento do que GeCo2). A RAM é constante e a ferramenta escala de forma eficiente, independentemente do tamanho da sequência. De forma geral, os rácios de compressão superam o estado da arte. Para o AC2, as melhorias e custos em relação ao AC são semelhantes, o que permite que a ferramenta também supere o estado da arte. Conclusões: O GeCo3 e o AC2 são compressores de sequências biológicas com uma abordagem de mistura baseada numa rede neuronal, que fornece ganhos adicionais em relação aos biocompressores específicos de topo. O método de mistura proposto é portátil, exigindo apenas as probabilidades dos modelos como entradas, proporcionando uma fácil adaptação a outros compressores de dados ou ferramentas de análise baseadas em compressão. O GeCo3 e o AC2 são distribuídos sob GPLv3 e estão disponíveis para download gratuito em https://github.com/ cobilab/geco3 e https://github.com/cobilab/ac2.Mestrado em Engenharia de Computadores e Telemátic

    Simulating social relations in multi-agent systems

    Get PDF
    Open distributed systems are comprised of a large number of heterogeneous nodes with disparate requirements and objectives, a number of which may not conform to the system specification. This thesis argues that activity in such systems can be regulated by using distributed mechanisms inspired by social science theories regarding similarity /kinship, trust, reputation, recommendation and economics. This makes it possible to create scalable and robust agent societies which can adapt to overcome structural impediments and provide inherent defence against malicious and incompetent action, without detriment to system functionality and performance. In particular this thesis describes: • an agent based simulation and animation platform (PreSage), which offers the agent developer and society designer a suite of powerful tools for creating, simulating and visualising agent societies from both a local and global perspective. • a social information dissemination system (SID) based on principles of self organisation which personalises recommendation and directs information dissemination. • a computational socio-cognitive and economic framework (CScEF) which integrates and extends socio-cognitive theories of trust, reputation and recommendation with basic economic theory. • results from two simulation studies investigating the performance of SID and the CScEF. The results show the production of a generic, reusable and scalable platform for developing and animating agent societies, and its contribution to the community as an open source tool. Secondly specific results, regarding the application of SID and CScEF, show that revealing outcomes of using socio-technical mechanisms to condition agent interactions can be demonstrated and identified by using Presage.Open Acces

    Data Politics

    Get PDF
    Data has become a social and political issue because of its capacity to reconfigure relationships between states, subjects, and citizens. This book explores how data has acquired such an important capacity and examines how critical interventions in its uses in both theory and practice are possible. Data and politics are now inseparable: data is not only shaping our social relations, preferences and life chances but our very democracies. Expert international contributors consider political questions about data and the ways it provokes subjects to govern themselves by making rights claims. Concerned with the things (infrastructures of servers, devices, and cables) and language (code, programming, and algorithms) that make up cyberspace, this book demonstrates that without understanding these conditions of possibility it is impossible to intervene in or to shape data politics. Aimed at academics and postgraduate students interested in political aspects of data, this volume will also be of interest to experts in the fields of internet studies, international studies, Big Data, digital social sciences and humanities

    Intelligent System Synthesis for Dynamic Locomotion Behavior in Multi-legged Robots

    Get PDF
    Robot technology has been implemented in many fields of our life, such as entertainment, security, rescue, rehabilitation, social life, the military, and etc. Multi-legged robot always exist in many fields, therefore it is important to be developed. Motion capabilities of the robot will be a main focus to be developed. Current development or conventional model of motion capabilities have several issues in saturation of development. There are some limitation in dynamic factors such as, locomotion generator, flexibility of motion planning, and smoothness of movement. Therefore, in this research, natural based computation are implemented as the basic model. There are three subsystems to be developed and integrated, (1) locomotion behavior model, (2) stability behavior model, and (3) motion planning model. Since individual people has different walking behavior in each walking direction and walking speed, locomotion behavior learning model of omni-directional bio-inspired locomotion which is generating different walking behavior in different walking provision are required to be developed. Step length in sagital and coronal direction, and degree of turning are considered parameters in walking provision. In proposed omni-directional walking model, interconnection structures composed by 16 neurons where 1 leg is represented by 4 joints and 1 joint is represented by 2 motor neurons. In order to acquire walking behavior in certain walking provision, the interconnection structure is optimized by multi-objectives evolutionary algorithm. For acquiring the diversity of references, several optimized interconnection structures are generated in optimization processes in different walking provisions. Learning models are proposed for solving non-linearity of relationship between walking input and walking output representing the synaptic weight of interconnection structure, where one learning model representing one walking parameter. Furthermore, by using optimized model, walking behavior can be generated with unsealed walking provision. Smooth walking transition with low error of desired walking provision was proved based on several numerical experiments in physical computer simulation. In stability behavior model, neuro-based push recovery controller is applied in multi-legged robot in order to keep the stability with minimum energy required. There are three motion patterns in individual people behavior when it gets external perturbation, those are ankle behavior, hip behavior, and step behavior. We propose a new model of Modular Recurrent Neural Network (MRNN) for performing online learning system in each motion behavior. MRNN consists of several recurrent neural networks (RNNs) working alternatively depending on the condition. MRNN performs online learning process of each motion behavior controller independently. The aim of push recovery controller is to manage the motion behavior controller by minimizing the energy required for responding to the external perturbation. This controller selects the appropriate motion behavior and adjusts the gain that represent the influence of the motion behavior to certain push disturbance based on behavior graphs which is generated by adaptive regression spline. We applied the proposed controller to the humanoid robot that has small footprint in open dynamics engine. Experimental result shows the effectiveness of the push controller stabilizing the external perturbation with minimum energy required. Proposed motion planning model presents a natural mechanism of the human brain for generating a dynamic path planning in 3-D rough terrain. The proposed model not only emphasizes the inner state process of the neuron but also the development process of the neurons in the brain. There are two information transmission processes in this proposed model, the forward transmission activity for constructing the neuron connections to find the possible way and the synaptic pruning activity with backward neuron transmission for finding the best pathway from current position to target position and reducing inefficient neuron with its synaptic connections. In order to respond and avoid the unpredictable obstacle, dynamic path planning is also considered in this proposed model. An integrated system for applying the proposed model in the actual experiments is also presented. In order to confirm the effectiveness of the proposed model, we applied the integrated system in the pathway of a four-legged robot on rough terrain in computer simulation. For analyzing and proving the flexibility of proposed model, unpredictable collision is also performed in those experiments. The model can find the best pathway and facilitate the safe movement of the robot. When the robot found an unpredictable collision, the path planner dynamically changed the pathway. The proposed path planning model is capable to be applied in further advance implementation. In order to implement the motion capabilities in real cases, all subsystem should be integrated into one interconnected motion capabilities model. We applied small quadruped robot equipped with IMU, touch sensor, and dual ultrasonic sensor for performing motion planning in real terrain from starting point to goal point. Before implemented, topological map is generated by Kinect camera. In this implementation, all subsystem were analyzed and performed well and the robot able to stop in the goal point. These implementation proved the effectiveness of the system integration, the motion planning model is able to generate safe path planning, the locomotion model is able to generate flexible movement depending on the walking provision from motion planning model, and the stability model can stabilize the robot on rough terrain. Generally, the proposed model can be expected to bring a great contribution to the motion capabilities development and can be used as alternative model for acquiring the dynamism and efficient model in the future instead of conventional model usage. In the future, the proposed model can be applied into any legged robot as navigation, supporter, or rescue robot in unstable environmental condition. In addition, we will realize a cognitive locomotion that generates multiple gaits depending on the 3 aspects, embodiment, locomotion generator, and cognition model. A dynamic neuro-locomotion integrated with internal and external sensory information for correlating with the environmental condition will be designed.ロボット技術は、エンターテイメント、セキュリティ、救助、リハビリ、社会生活、軍事などの様々な生活分野に実現さている。多脚ロポットは常に多くの分野に存在するため開発することが重要である。ロボットの運動能力が開発の主要となっている。現状の開発されている動作能力は,飽和状態にある。いくつかの動的な要因により、歩行生成器、動作計画の柔軟性、および動作の滑らかさ等に制限がある。そこで、本研究では、基本的なモデルとして自然計算に基づく方法論を実装する、また、本研究では、歩行動作モデル、安定動作モデル、や運動計画モデルからなる3つのサブシステムを開発し統合する。人間は歩行方向と速度に応じて歩行動作が異なるため、異なる歩行軸では異なる歩行動作を生成するという全方位生物的な運動の歩行動作学習モデルが開発には要求される。球欠および制御方向のステップ長や旋回の度合いは,歩行軸のパラメータとして考慮される。提案した全方位歩行モデルでは,1肢につき16個のニューロンによって構成される相互接続構造を4つの関節によって表現する。また、1つの関節は,2個のモータニューロンによって表現する。一定の歩行軸での歩行動作を獲得するために,本研究では,多目的進化アルゴリズムによって最適化を行う。提案手法では、参照点の多様性を獲得するために,異なる歩行軸においていくつかの最適な相互接続構造が生成される。相互接続構造のシナプス重みを表現している歩行入力と出力間の非線形な関係を解くための学習モデルを構築する。本手法では,1つの学習モデルが1つの歩行パラメータで表現され、最適化されたモデルを用いることにより,歩行動作は,スケーリングされていない歩行軸を生成することが可能となる,物理演算シミュレーションを用いた実験により,誤差の少ない歩行軸の滑らかな歩行遷移を本実験では示している。安定動作モデルでは、必要最小限のエネルギーで安定性を維持するため多足歩行ロボットにニューロベースプッシュリカバリ制御器を適用した。外力をを受けたとき,人間の行動には足首の動作・股関節の動作・踏み動作の3つの動作パターンが存在する。本研究では,各運動動作におけるオンライン学習システムを実現するために、モジュラーリカレントニューラルネットワーク(MRNN)を用いた新たな学習モデルを提案する。MRNNは状況に応じて選択される複数のリカレントニューラルネットワーク(RNN)によって構成される。MRNNは各運動動作コントローラのオンライン学習プロセスを独立して実行する。プッシュリカバリ制御器の目的は、外乱に応じてエネルギー最小化を行うことによって運動動作制御器を管理することである。この制御器は適切な運動動作を選択し,適応回帰スプラインにより生成された動作グラフに基づき押し動作に対して最も影響を及ぼす運動動作のゲインの調整を行う。提案した制御器をOpen Dynamics Engine(ODE)上で小さな足の長さを持つヒューマノイドロボットに適用し,必要最小限のエネルギーで外力に対して安定させるプッシュリカバリ制御器の有効性を示している。3次元の不整地における動的な経路計画を生成するために,人間の自然な脳機能に基づいた動作計画手法を提案する。本モデルは、ニューロンの内部状態過程だけでなく、脳内のニューロンの発達過程も重視している。本モデルは二つのアルゴリズムに構成される。1つは、通過可能な道を見つけるために構築される接続的なニューロン活動である順方向伝達活動であり,もう1つは、現在位置から最適経路を見つけるために、シナプス結合を用いて非効率的なニューロンを減少させる逆方向にニューロン伝達を行うシナプスプルーニング活動である。また,予測不可能な衝突を回避するために,動的な経路計画も実行される。さらに、実環境において提案されたモデルを実現するための統合システムも提示される。提案モデルの有効性を検証するために,コンピュータシミュレーション上で、不整地環境の4足歩行ロボットに関するシミュレーション環境を実装した。これらの実験では,予測不能な衝突に関する実験も行った。本モデルは、最適経路を見つけ出しロボットの安全な移動を実現できた。さらに、ロボットが予測できない衝突を検出した場合,経路計画アルゴリズムが経路を動的に変更可能であることを示している。これらのことから、提案された経路計画モデルはさらなる先進的な展開が実現可能であると考えられる。実環境における運動能力を実装するためには、すべてのサブシステムを1つの運動能力モデルに統合する必要がある。そこで本研究では、IMU、タッチセンサ、2つの超音波センサを搭載した小型の4足歩行ロポットを用いた実環境において出発地点から目的地点までの運動計画を行った、本実装では、3次元距離計測センサであるKinecを用い3次元空間の位相構造を生成する。また、本実装では、すべてのサブシステムが分析され、ロボットは目的地点で停止することができた。さらに、安全な経路計画を生成することができたことからシステム統合の有効性が確認できた。また、歩行モデルにより歩行軸に応じた柔軟な動きが生成されることで、この安定性モデルは不整地環撹でもロボットの歩行を安定させることができた。これらのことから、本提案モデルは運動能力への多大な貢献が期待され、ダイナミクスを獲得するための代替モデルとして使用することができ,現在よく使用されているモデルに代わる効率的なモデルとなることが考えられる。今後の課題としては,不安定な環境下におけるナビゲーション・支援・レスキューロボットといった任意の肢の数を持つ多足歩行ロボットへの本提案モデルの適用があげられる。さらに,身体性,歩行生成,認知モデルの3つの観点から複数の歩容を生成する認知的歩行を実現することを考えている。環境と相互作用するためのモデルとして、内界センサと外界センサ情報を統合した動的ニューロ歩行を実現する予定である。首都大学東京, 2018-03-25, 修士(工学)首都大学東

    Explicit Building Block Multiobjective Evolutionary Computation: Methods and Applications

    Get PDF
    This dissertation presents principles, techniques, and performance of evolutionary computation optimization methods. Concentration is on concepts, design formulation, and prescription for multiobjective problem solving and explicit building block (BB) multiobjective evolutionary algorithms (MOEAs). Current state-of-the-art explicit BB MOEAs are addressed in the innovative design, execution, and testing of a new multiobjective explicit BB MOEA. Evolutionary computation concepts examined are algorithm convergence, population diversity and sizing, genotype and phenotype partitioning, archiving, BB concepts, parallel evolutionary algorithm (EA) models, robustness, visualization of evolutionary process, and performance in terms of effectiveness and efficiency. The main result of this research is the development of a more robust algorithm where MOEA concepts are implicitly employed. Testing shows that the new MOEA can be more effective and efficient than previous state-of-the-art explicit BB MOEAs for selected test suite multiobjective optimization problems (MOPs) and U.S. Air Force applications. Other contributions include the extension of explicit BB definitions to clarify the meanings for good single and multiobjective BBs. A new visualization technique is developed for viewing genotype, phenotype, and the evolutionary process in finding Pareto front vectors while tracking the size of the BBs. The visualization technique is the result of a BB tracing mechanism integrated into the new MOEA that enables one to determine the required BB sizes and assign an approximation epistasis level for solving a particular problem. The culmination of this research is explicit BB state-of-the-art MOEA technology based on the MOEA design, BB classifier type assessment, solution evolution visualization, and insight into MOEA test metric validation and usage as applied to test suite, deception, bioinformatics, unmanned vehicle flight pattern, and digital symbol set design MOPs

    Multi objective evolutionary optimization in uncertain environments

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Feature Subset Selection in Intrusion Detection Using Soft Computing Techniques

    Get PDF
    Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool such as Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore, accurate detection of network attack is imperative. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. Such weaknesses of the existing techniques have motivated the research presented in this thesis. One of the weaknesses of the existing intrusion detection approaches is the usage of a raw dataset for classification but the classifier may get confused due to redundancy and hence may not classify correctly. To overcome this issue, Principal Component Analysis (PCA) has been employed to transform raw features into principal features space and select the features based on their sensitivity. The sensitivity is determined by the values of eigenvalues. The recent approaches use PCA to project features space to principal feature space and select features corresponding to the highest eigenvalues, but the features corresponding to the highest eigenvalues may not have the optimal sensitivity for the classifier due to ignoring many sensitive features. Instead of using traditional approach of selecting features with the highest eigenvalues such as PCA, this research applied a Genetic Algorithm (GA) to search the principal feature space that offers a subset of features with optimal sensitivity and the highest discriminatory power. Based on the selected features, the classification is performed. The Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification purpose due to their proven ability in classification. This research work uses the Knowledge Discovery and Data mining (KDD) cup dataset, which is considered benchmark for evaluating security detection mechanisms. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates

    Investigative Methods:An NCRM Innovation Collection

    Get PDF

    Thinking with Uncertainty: Scaling Up and Down in the Cryptocurrency World

    Get PDF
    Against a background of uncertainty, this thesis draws on an understanding of anthropology that disturbs the rushed neoliberal temporality, and looks for mushrooms (Bear, 2014, 2020; Tsing, 2017). It looks closely at the strategies and relations used by occupants of the cryptocurrency space to make habitable a highly volatile and uncertain world. My research participants occupy the heart of contemporary capitalism: in start-up spaces and banks, and also the peripheries: as multi-level marketing investors and 'noisy' retails traders (Preda, 2017). They are united in their engagement with a highly volatile market and uncertain space. They turn to practices of storytelling (Jackson, 2002); take to stages to scale themselves up and scale the world down (Hart, 2014; Tsing, 2012); 'cook money' (Carsten, 1989); form arborescent and rhizomatic networks (Strathern, 2017); and take chances in the face of 'wage slavery', in order to scale their knowledge of the cryptocurrency world
    corecore