2,507 research outputs found

    Use of Excel worksheets with user-friendly interface in batch process (PSBP) to minimize the makespan

    Get PDF
    In the chemical industry, the necessity for scheduling is becoming more pronounced, especially in batch production mode. Nowadays, planning industrial activities is a necessity for survival. Intense competition requires diversified products and delivery in accordance with the requirements of consumers. These activities require quick decision making and the lowest possible cost, through an efficient Production Scheduling. So, this work addresses the Permutation Flow Shop scheduling problem, characterized as Production Scheduling in Batch Process (PSBP), with the objective of minimizing the total time to complete the schedule (Makespan). A method to approach the problem of production scheduling is to turn it into Mixed Integer Linear Programming- MILP, and to solve it using commercial mathematical programming packages. In this study an electronic spreadsheet with user-friendly interface (ESUFI) was developed in Microsoft Excel. The ease of manipulation of the ESUFI is quite evident, as with the use of VBA language a user-friendly interface could be created between the user and the spreadsheet itself. The results showed that it is possible to use the ESUFI for small problems

    MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models

    Get PDF
    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEv​al/downloads

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    Web Service Retrieval by Structured Models

    Get PDF
    Much of the information available on theWorldWideWeb cannot effectively be found by the help of search engines because the information is dynamically generated on a user’s request.This applies to online decision support services as well as Deep Web information. We present in this paper a retrieval system that uses a variant of structured modeling to describe such information services, and similarity of models for retrieval. The computational complexity of the similarity problem is discussed, and graph algorithms for retrieval on repositories of service descriptions are introduced. We show how bounds for combinatorial optimization problems can provide filter algorithms in a retrieval context. We report about an evaluation of the retrieval system in a classroom experiment and give computational results on a benchmark library.Economics ;

    Finding Improving Solutions that Control Disruption to Binary Optimization Problems

    Get PDF
    Conventional optimization solvers provide a single optimal solution to an optimization model, which in some cases is undesirable to the decision maker because of the large discrepancy between the optimal solution and the existing conditions of the real-world situation the model represents. This project focuses on developing an algorithm and computational program to generate solutions to binary integer optimization problems that can simultaneously improve the objective function value and yet control disruption from the current condition. The program uses Dinkelbach’s algorithm to determine such a solution, and is implemented in Excel utilizing Visual Basic for Applications (VBA) in conjunction with OpenSolver. Detailed instructions are included to guide users through the entire process

    Mathematical programming modelling tools for resource-poor countries and organisations

    Get PDF
    In recent years, powerful mathematical modelling languages have enabled Operational Research practitioners to rapidly develop prototype tools capable of modelling complex managerial decisions such as staff shift scheduling, or production and supply chain planning. However, such tools have often required expensive commercial optimisation solvers that are sometimes beyond the financial reach of small companies and organisations, particularly in the low-income and emerging economies. Fortunately, the worldwide scope of the internet has put powerful free optimisation tools within the reach of anyone with a modest PC and even a slow internet connection. This article will present examples showing just how beneficial such an approach can be for resource-poor organisations

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.
    corecore