19 research outputs found

    A Multimodal and Multi-Algorithmic Architecture for Data Fusion in Biometric Systems

    Get PDF
    Software di autenticazione basato su tratti biometric

    Advanced Biometric Technologies: Emerging Scenarios and Research Trends

    Get PDF
    Biometric systems are the ensemble of devices, procedures, and algorithms for the automatic recognition of individuals by means of their physiological or behavioral characteristics. Although biometric systems are traditionally used in high-security applications, recent advancements are enabling the application of these systems in less-constrained conditions with non-ideal samples and with real-time performance. Consequently, biometric technologies are being increasingly used in a wide variety of emerging application scenarios, including public infrastructures, e-government, humanitarian services, and user-centric applications. This chapter introduces recent biometric technologies, reviews emerging scenarios for biometric recognition, and discusses research trends

    Feature-level fusion in multimodal biometrics

    Get PDF
    Multimodal biometric systems utilize the evidence presented by multiple biometric modalities (e.g., face and fingerprint, multiple fingers of a user, multiple impressions of a single finger, etc.) in order to determine or verify the identity of an individual. Information from multiple sources can be consolidated in three distinct levels [1]: (i) feature set level; (ii) match score level; and (iii) decision level. While fusion at the match score and decision levels have been extensively studied in the literature, fusion at the feature level is a relatively understudied problem. A novel technique to perform fusion at the feature level by considering two biometric modalities---face and hand geometry, is presented in this paper. Also, a new distance metric conscripted as the Thresholded Absolute Distance (TAD) is used to help reinforce the system\u27s robustness towards noise. Finally, two techniques are proposed to consolidate information available after match score fusion, with that obtained after feature set fusion. These techniques further enhance the performance of the multimodal biometric system and help find an approximate upper bound on its performance. Results indicate that the proposed techniques can lead to substantial improvement in multimodal matching abilities

    Information Fusion in Multibiometric Systems

    Get PDF

    Securing Cloud Storage by Transparent Biometric Cryptography

    Get PDF
    With the capability of storing huge volumes of data over the Internet, cloud storage has become a popular and desirable service for individuals and enterprises. The security issues, nevertheless, have been the intense debate within the cloud community. Significant attacks can be taken place, the most common being guessing the (poor) passwords. Given weaknesses with verification credentials, malicious attacks have happened across a variety of well-known storage services (i.e. Dropbox and Google Drive) – resulting in loss the privacy and confidentiality of files. Whilst today's use of third-party cryptographic applications can independently encrypt data, it arguably places a significant burden upon the user in terms of manually ciphering/deciphering each file and administering numerous keys in addition to the login password. The field of biometric cryptography applies biometric modalities within cryptography to produce robust bio-crypto keys without having to remember them. There are, nonetheless, still specific flaws associated with the security of the established bio-crypto key and its usability. Users currently should present their biometric modalities intrusively each time a file needs to be encrypted/decrypted – thus leading to cumbersomeness and inconvenience while throughout usage. Transparent biometrics seeks to eliminate the explicit interaction for verification and thereby remove the user inconvenience. However, the application of transparent biometric within bio-cryptography can increase the variability of the biometric sample leading to further challenges on reproducing the bio-crypto key. An innovative bio-cryptographic approach is developed to non-intrusively encrypt/decrypt data by a bio-crypto key established from transparent biometrics on the fly without storing it somewhere using a backpropagation neural network. This approach seeks to handle the shortcomings of the password login, and concurrently removes the usability issues of the third-party cryptographic applications – thus enabling a more secure and usable user-oriented level of encryption to reinforce the security controls within cloud-based storage. The challenge represents the ability of the innovative bio-cryptographic approach to generate a reproducible bio-crypto key by selective transparent biometric modalities including fingerprint, face and keystrokes which are inherently noisier than their traditional counterparts. Accordingly, sets of experiments using functional and practical datasets reflecting a transparent and unconstrained sample collection are conducted to determine the reliability of creating a non-intrusive and repeatable bio-crypto key of a 256-bit length. With numerous samples being acquired in a non-intrusive fashion, the system would be spontaneously able to capture 6 samples within minute window of time. There is a possibility then to trade-off the false rejection against the false acceptance to tackle the high error, as long as the correct key can be generated via at least one successful sample. As such, the experiments demonstrate that a correct key can be generated to the genuine user once a minute and the average FAR was 0.9%, 0.06%, and 0.06% for fingerprint, face, and keystrokes respectively. For further reinforcing the effectiveness of the key generation approach, other sets of experiments are also implemented to determine what impact the multibiometric approach would have upon the performance at the feature phase versus the matching phase. Holistically, the multibiometric key generation approach demonstrates the superiority in generating the bio-crypto key of a 256-bit in comparison with the single biometric approach. In particular, the feature-level fusion outperforms the matching-level fusion at producing the valid correct key with limited illegitimacy attempts in compromising it – 0.02% FAR rate overall. Accordingly, the thesis proposes an innovative bio-cryptosystem architecture by which cloud-independent encryption is provided to protect the users' personal data in a more reliable and usable fashion using non-intrusive multimodal biometrics.Higher Committee of Education Development in Iraq (HCED

    Information Fusion in Multibiometric Systems

    Get PDF

    A Wearable Wrist Band-Type System for Multimodal Biometrics Integrated with Multispectral Skin Photomatrix and Electrocardiogram Sensors

    Get PDF
    Multimodal biometrics are promising for providing a strong security level for personal authentication, yet the implementation of a multimodal biometric system for practical usage need to meet such criteria that multimodal biometric signals should be easy to acquire but not easily compromised. We developed a wearable wrist band integrated with multispectral skin photomatrix (MSP) and electrocardiogram (ECG) sensors to improve the issues of collectability, performance and circumvention of multimodal biometric authentication. The band was designed to ensure collectability by sensing both MSP and ECG easily and to achieve high authentication performance with low computation, efficient memory usage, and relatively fast response. Acquisition of MSP and ECG using contact-based sensors could also prevent remote access to personal data. Personal authentication with multimodal biometrics using the integrated wearable wrist band was evaluated in 150 subjects and resulted in 0.2% equal error rate ( EER ) and 100% detection probability at 1% FAR (false acceptance rate) ( PD.1 ), which is comparable to other state-of-the-art multimodal biometrics. An additional investigation with a separate MSP sensor, which enhanced contact with the skin, along with ECG reached 0.1% EER and 100% PD.1 , showing a great potential of our in-house wearable band for practical applications. The results of this study demonstrate that our newly developed wearable wrist band may provide a reliable and easy-to-use multimodal biometric solution for personal authentication

    Performance analysis of multimodal biometric fusion

    Get PDF
    Biometrics is constantly evolving technology which has been widely used in many official and commercial identification applications. In fact in recent years biometric-based authentication techniques received more attention due to increased concerns in security. Most biometric systems that are currently in use typically employ a single biometric trait. Such systems are called unibiometric systems. Despite considerable advances in recent years, there are still challenges in authentication based on a single biometric trait, such as noisy data, restricted degree of freedom, intra-class variability, non-universality, spoof attack and unacceptable error rates. Some of the challenges can be handled by designing a multimodal biometric system. Multimodal biometric systems are those which utilize or are capable of utilizing, more than one physiological or behavioural characteristic for enrolment, verification, or identification. In this thesis, we propose a novel fusion approach at a hybrid level between iris and online signature traits. Online signature and iris authentication techniques have been employed in a range of biometric applications. Besides improving the accuracy, the fusion of both of the biometrics has several advantages such as increasing population coverage, deterring spoofing activities and reducing enrolment failure. In this doctoral dissertation, we make a first attempt to combine online signature and iris biometrics. We principally explore the fusion of iris and online signature biometrics and their potential application as biometric identifiers. To address this issue, investigations is carried out into the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. We compare the results of the multimodal approach with the results of the individual online signature and iris authentication approaches. This dissertation describes research into the feature and decision fusion levels in multimodal biometrics.State of Kuwait – The Public Authority of Applied Education and Trainin

    Liveness Detection on Fingers Using Vein Pattern

    Get PDF
    Tato práce se zabývá rozšířením snímače otisků prstů Touchless Biometric Systems 3D-Enroll o jednotku detekce živosti prstu na základě žil. Bylo navrhnuto a zkonstruováno hardwarové řešení s využitím infračervených diod. Navržené softwarové řešení pracuje ve dvou různých režimech: detekce živosti na základě texturních příznaků a verifikace uživatelů na základě porovnávání žilních vzorů. Datový soubor obsahující přes 1100 snímků jak živých prstů tak jejich falsifikátů vznikl jako součást této práce a výkonnost obou zmíněných režimů byla vyhodnocena na tomto datovém souboru. Na závěr byly navrhnuty materiály vhodné k výrobě falsifikátů otisků prstů umožňující oklamání detekce živosti pomocí žilních vzorů.This work presents liveness detection extension of the Touchless Biometric Systems 3D-Enroll fingerprint sensor which is based on finger vein pattern. Hardware solution was designed and realized using infrared diodes. Designed software system operates in two different modes: liveness detection based on texture features and user verification using finger vein matching. A dataset containing more than 1,100 images of both real fingers and their falsifications was gathered. Performance of both proposed modes was evaluated using mentioned dataset and suitable materials, that can fool the liveness detection module, were highlighted.

    Authentication and Authorization for Mobile IoT Devices Using Biofeatures: Recent Advances and Future Trends

    Get PDF
    Biofeatures are fast becoming a key tool to authenticate the IoT devices; in this sense, the purpose of this investigation is to summarise the factors that hinder biometrics models’ development and deployment on a large scale, including human physiological (e.g., face, eyes, fingerprints-palm, or electrocardiogram) and behavioral features (e.g., signature, voice, gait, or keystroke). The different machine learning and data mining methods used by authentication and authorization schemes for mobile IoT devices are provided. Threat models and countermeasures used by biometrics-based authentication schemes for mobile IoT devices are also presented. More specifically, we analyze the state of the art of the existing biometric-based authentication schemes for IoT devices. Based on the current taxonomy, we conclude our paper with different types of challenges for future research efforts in biometrics-based authentication schemes for IoT devices
    corecore