6,627 research outputs found

    Building an environment model using depth information

    Get PDF
    Modeling the environment is one of the most crucial issues for the development and research of autonomous robot and tele-perception. Though the physical robot operates (navigates and performs various tasks) in the real world, any type of reasoning, such as situation assessment, planning or reasoning about action, is performed based on information in its internal world. Hence, the robot's intentional actions are inherently constrained by the models it has. These models may serve as interfaces between sensing modules and reasoning modules, or in the case of telerobots serve as interface between the human operator and the distant robot. A robot operating in a known restricted environment may have a priori knowledge of its whole possible work domain, which will be assimilated in its World Model. As the information in the World Model is relatively fixed, an Environment Model must be introduced to cope with the changes in the environment and to allow exploring entirely new domains. Introduced here is an algorithm that uses dense range data collected at various positions in the environment to refine and update or generate a 3-D volumetric model of an environment. The model, which is intended for autonomous robot navigation and tele-perception, consists of cubic voxels with the possible attributes: Void, Full, and Unknown. Experimental results from simulations of range data in synthetic environments are given. The quality of the results show great promise for dealing with noisy input data. The performance measures for the algorithm are defined, and quantitative results for noisy data and positional uncertainty are presented

    Testing the Flyby Anomaly with the GNSS Constellation

    Full text link
    We propose the concept of a space mission to probe the so called flyby anomaly, an unexpected velocity change experienced by some deep-space probes using earth gravity assists. The key feature of this proposal is the use of GNSS systems to obtain an increased accuracy in the tracking of the approaching spacecraft, mainly near the perigee. Two low-cost options are also discussed to further test this anomaly: an add-on to an existing spacecraft and a dedicated mission.Comment: 8 pages, 1 figure, 4 table

    Toward an object-based semantic memory for long-term operation of mobile service robots

    Get PDF
    Throughout a lifetime of operation, a mobile service robot needs to acquire, store and update its knowledge of a working environment. This includes the ability to identify and track objects in different places, as well as using this information for interaction with humans. This paper introduces a long-term updating mechanism, inspired by the modal model of human memory, to enable a mobile robot to maintain its knowledge of a changing environment. The memory model is integrated with a hybrid map that represents the global topology and local geometry of the environment, as well as the respective 3D location of objects. We aim to enable the robot to use this knowledge to help humans by suggesting the most likely locations of specific objects in its map. An experiment using omni-directional vision demonstrates the ability to track the movements of several objects in a dynamic environment over an extended period of time

    Automatic rule generation for high-level vision

    Get PDF
    Many high-level vision systems use rule-based approaches to solving problems such as autonomous navigation and image understanding. The rules are usually elaborated by experts. However, this procedure may be rather tedious. In this paper, we propose a method to generate such rules automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules

    Diagrammatic Reasoning and Modelling in the Imagination: The Secret Weapons of the Scientific Revolution

    Get PDF
    Just before the Scientific Revolution, there was a "Mathematical Revolution", heavily based on geometrical and machine diagrams. The "faculty of imagination" (now called scientific visualization) was developed to allow 3D understanding of planetary motion, human anatomy and the workings of machines. 1543 saw the publication of the heavily geometrical work of Copernicus and Vesalius, as well as the first Italian translation of Euclid

    Can core-surface flow models be used to improve the forecast of the Earth's main magnetic field?

    Get PDF
    [1] Geomagnetic main field models used for navigation are updated every 5 years and contain a forecast of the geomagnetic secular variation for the upcoming epoch. Forecasting secular variation is a difficult task. The change of the main magnetic field is thought to be principally due to advection of the field by flow at the surface of the outer core on short timescales and when large length scales are considered. With accurate secular variation (SV) and secular acceleration (SA) models now available from new satellite missions, inverting for the flow and advecting it forward could lead to a more accurate prediction of the main field. However, this scheme faces two significant challenges. The first arises from the truncation of the observable main field at spherical harmonic degree 13. This can however be handled if the true core flow is large scale and has a rapidly decaying energy spectrum. The second is that even at a given single epoch the instantaneous SV and SA cannot simultaneously be explained by a steady flow. Nevertheless, we find that it may be feasible to use flow models for an improved temporal extrapolation of the main field. A medium-term (≈10 years) hindcast of the field using a steady flow model outperforms the usual extrapolation using the presently observed SV and SA. On the other hand, our accelerated, toroidal flow model, which explains a larger portion of the observed average SA over the 2000–2005 period, fails to improve both the short-term and medium-term hindcasts of the field. This somewhat paradoxical result is related to the occurrence of so-called geomagnetic jerks, the still poorly known dynamical nature of which remains the main obstacle to improved geomagnetic field forecasts

    Evidence against the Detectability of a Hippocampal Place Code Using Functional Magnetic Resonance Imaging

    Get PDF
    Individual hippocampal neurons selectively increase their firing rates in specific spatial locations. As a population, these neurons provide a decodable representation of space that is robust against changes to sensory- and path-related cues. This neural code is sparse and distributed, theoretically rendering it undetectable with population recording methods such as functional magnetic resonance imaging (fMRI). Existing studies nonetheless report decoding spatial codes in the human hippocampus using such techniques. Here we present results from a virtual navigation experiment in humans in which we eliminated visual- and path-related confounds and statistical limitations present in existing studies, ensuring that any positive decoding results would represent a voxel-place code. Consistent with theoretical arguments derived from electrophysiological data and contrary to existing fMRI studies, our results show that although participants were fully oriented during the navigation task, there was no statistical evidence for a place code
    corecore