2,237 research outputs found

    Modeling of Speech Parameter Sequence Considering Global Variance for HMM-Based Speech Synthesis

    Get PDF
    Speech technologies such as speech recognition and speech synthesis have many potential applications since speech is the main way in which most people communicate. Various linguistic sounds are produced by controlling the configuration of oral cavities to convey a message in speech communication. The produced speech sounds temporally vary and ar

    Voice Conversion

    Get PDF

    Model-based Parametric Prosody Synthesis with Deep Neural Network

    Get PDF
    Conventional statistical parametric speech synthesis (SPSS) captures only frame-wise acoustic observations and computes probability densities at HMM state level to obtain statistical acoustic models combined with decision trees, which is therefore a purely statistical data-driven approach without explicit integration of any articulatory mechanisms found in speech production research. The present study explores an alternative paradigm, namely, model-based parametric prosody synthesis (MPPS), which integrates dynamic mechanisms of human speech production as a core component of F0 generation. In this paradigm, contextual variations in prosody are processed in two separate yet integrated stages: linguistic to motor, and motor to acoustic. Here the motor model is target approximation (TA), which generates syllable-sized F0 contours with only three motor parameters that are associated to linguistic functions. In this study, we simulate this two-stage process by linking the TA model to a deep neural network (DNN), which learns the “linguistic-motor” mapping given the “motor-acoustic” mapping provided by TA-based syllable-wise F0 production. The proposed prosody modeling system outperforms the HMM-based baseline system in both objective and subjective evaluations

    Analysis of Speaker Adaptation Algorithms for HMM-based Speech Synthesis and a Constrained SMAPLR Adaptation Algorithm

    Get PDF
    In this paper we analyze the effects of several factors and configuration choices encountered during training and model construction when we want to obtain better and more stable adaptation in HMM-based speech synthesis. We then propose a new adaptation algorithm called constrained structural maximum a posteriori linear regression (CSMAPLR) whose derivation is based on the knowledge obtained in this analysis and on the results of comparing several conventional adaptation algorithms. Here we investigate six major aspects of the speaker adaptation: initial models transform functions, estimation criteria, and sensitivity of several linear regression adaptation algorithms algorithms. Analyzing the effect of the initial model, we compare speaker-dependent models, gender-independent models, and the simultaneous use of the gender-dependent models to single use of the gender-dependent models. Analyzing the effect of the transform functions, we compare the transform function for only mean vectors with that for mean vectors and covariance matrices. Analyzing the effect of the estimation criteria, we compare the ML criterion with a robust estimation criterion called structural MAP. We evaluate the sensitivity of several thresholds for the piecewise linear regression algorithms and take up methods combining MAP adaptation with the linear regression algorithms. We incorporate these adaptation algorithms into our speech synthesis system and present several subjective and objective evaluation results showing the utility and effectiveness of these algorithms in speaker adaptation for HMM-based speech synthesis
    corecore