542 research outputs found

    Solving the dual subproblem of the Method of Moving Asymptotes using a trust-region scheme

    Get PDF
    An alternative strategy to solve the subproblems of the Method of Moving Asymptotes (MMA) is presented, based on a trust-region scheme applied to the dual of the MMA subproblem. At each iteration, the objective function of the dual problem is approximated by a regularized spectral model. A globally convergent modification to the MMA is also suggested, in which the conservative condition is relaxed by means of a summable controlled forcing sequence. Another modification to the MMA previously proposed by the authors [Optim. Methods Softw., 25 (2010), pp. 883-893] is recalled to be used in the numerical tests. This modification is based on the spectral parameter for updating the MMA models, so as to improve their quality. The performed numerical experiments confirm the efficiency of the indicated modifications, especially when jointly combined.151170Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Frequency Tracking and Parameter Estimation for Robust Quantum State-Estimation

    Full text link
    In this paper we consider the problem of tracking the state of a quantum system via a continuous measurement. If the system Hamiltonian is known precisely, this merely requires integrating the appropriate stochastic master equation. However, even a small error in the assumed Hamiltonian can render this approach useless. The natural answer to this problem is to include the parameters of the Hamiltonian as part of the estimation problem, and the full Bayesian solution to this task provides a state-estimate that is robust against uncertainties. However, this approach requires considerable computational overhead. Here we consider a single qubit in which the Hamiltonian contains a single unknown parameter. We show that classical frequency estimation techniques greatly reduce the computational overhead associated with Bayesian estimation and provide accurate estimates for the qubit frequencyComment: 6 figures, 13 page

    Spatial damping identification and control of mechanical systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Dynamics of Numerics & Spurious Behaviors in CFD Computations

    Get PDF
    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD
    • …
    corecore