4,773 research outputs found

    A spectral optical flow method for determining velocities from digital imagery

    Full text link
    We present a method for determining surface flows from solar images based upon optical flow techniques. We apply the method to sets of images obtained by a variety of solar imagers to assess its performance. The {\tt opflow3d} procedure is shown to extract accurate velocity estimates when provided perfect test data and quickly generates results consistent with completely distinct methods when applied on global scales. We also validate it in detail by comparing it to an established method when applied to high-resolution datasets and find that it provides comparable results without the need to tune, filter or otherwise preprocess the images before its application.Comment: 12 pages, 5 figures. Submitted to Earth Science Informatic

    Application of LANDSAT to the management of Delaware's marine and wetland resources

    Get PDF
    The author has identified the following significant results. LANDSAT data were found to be the best source of synoptic information on the distribution of horizontal water mass discontinuities (fronts) at different portions of the tidal cycle. Distributions observed were used to improve an oil slick movement prediction model for the Delaware Bay. LANDSAT data were used to monitor the movement and dispersion of industrial acid waste material dumped over the continental shelf. A technique for assessing aqueous sediment concentration with limited ground truth was proposed

    Application of ecological, geological and oceanographic ERTS-1 imagery to Delaware's coastal resources management

    Get PDF
    The author has identified the following significant results. Data from twelve successful ERTS-1 passes over Delaware Bay have been analyzed with special emphasis on coastal vegetation, land use, current circulation, water turbidity and pollution dispersion. Secchi depth, suspended sediment concentration and transmissivity as measured from helicopters and boats were correlated with ERTS-1 image radiance. Multispectral signatures of acid disposal plumes, sediment plumes and slick were investigated. Ten vegetative cover and water discrimination classes were selected for mapping: (1) forest-land; (2) Phragmites communis; (3) Spartina patens and Distichlis spicata; (4) Spartina alterniflora; (5) cropland; (6) plowed cropland; (7) sand and bare sandy soil; (8) bare mud; (9) deep water; and (10) sediment-laden and shallow water. Canonical analysis predicted good classification accuracies for most categories. The actual classification accuracies were very close to the predicted values with 8 of 10 categories classified with greater than 90% accuracy indicating that representative training sets had been selected

    California coastal processes study: Skylab

    Get PDF
    The author has identified the following significant results. In San Pablo Bay, the patterns of dredged sediment discharges were plotted over a three month period. It was found that lithogenous particles, kept in suspension by the fresh water from the Sacramento-San Joaquin, were transported downstream to the estuarine area at varying rates depending on the river discharge level. Skylab collected California coastal imagery at limited times and not at constant intervals. Resolution, however, helped compensate for lack of coverage. Increased spatial and spectral resolution provided details not possible utilizing Landsat imagery. The S-192 data was reformatted; band by band image density stretching was utilized to enhance sediment discharge patterns entrainment, boundaries, and eddys. The 26 January 1974 Skylab 4 imagery of San Francisco Bay was taken during an exceptionally high fresh water and suspended sediment discharge period. A three pronged surface sediment pattern was visible where the Sacramento-San Joaquin Rivers entered San Pablo Bay through Carquinez Strait

    Project Tech Top study of lunar, planetary and solar topography Final report

    Get PDF
    Data acquisition techniques for information on lunar, planetary, and solar topograph

    Further SEASAT SAR coastal ocean wave analysis

    Get PDF
    Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results

    Quantification and Change Assessment Benjamin Aubrey Robson 2016 Dissertation date: 31st October 2016 of Debris-Covered Glaciers using Remote Sensing

    Get PDF
    This thesis investigates how remote sensing data can be used to assess the changing state of debris-covered ice. The principal study areas are the Manaslu Region in Nepal (papers I and III) and the Hohe Tauern National Park, Austria (paper II). Clean glacier ice is straightforward to semi-automatically classify using multi-spectral satellite imagery owing to the strong spectral signature of clean ice in the visible and near-infrared sections of the electromagnetic spectrum. Since the ablation zones of clean ice glaciers are at the pressure melting point, a change in terminus position or glacier area can be directly linked to a change in climate. Debris-covered ice is however more complicated to map and to interpret temporal change. Supraglacial debris is spectrally indistinguishable from the surrounding paraglacial terrain, and requires auxiliary data such as a Digital Elevation Model (DEM), thermal band data, or flow data. Object-Based Image Analysis (OBIA) provides a framework for combining multiple datasets in one analysis, while additionally allowing shape, contextual, hierarchical and textural criteria to be used to classify imagery. Paper I combines optical (Landsat-8), topographic (void-filled SRTM) and SAR coherence (ALOS PALSAR) data within an OBIA workflow to semi-automatically classify both clean ice and debris-covered ice in the challenging area surrounding Mount Manaslu in Nepal. When compared with manually delineated outlines, the classification achieved an accuracy of 91% (93% for clean ice and 83% for debriscovered ice). The classification was affected by seasonal snow and shadows while the debris-covered ice mapping was influenced by the datasets being temporally inconsistent, and the mountainous topography causing inconsistencies in the SAR coherence data. The method compares well with other automated techniques for classifying debris-covered ice, but has two additional advantages: firstly, that SAR coherence data can distinguish active ice from stagnant ice based on whether motion or significant downwasting has occured, and secondly, that the method is applicable over a large study area using just space-borne data. Paper II explores the potential of using high-resolution (10 m) topographic data and an edge detection algorithm to morphologically map the extent of debris-covered ice. The method was applied in the Hohe Tauern National Park, Austria, using a 10 m DEM derived from airborne Light Detection and Radar (LiDAR) acquisitions. Additionally, the end-of-summer transient snowline (TSL) was also mapped, which approximates the annual Equilibrium Line Altitude (ELA). Our classification was applied on three Landsat satellite images from 1985, 2003 and 2013 and compared the results to the Austrian Glacier Inventories from 1969 and 1998 to derive decadal-scale glacial changes. A mean rate of glacier area reduction of 1.4 km2a-1 was calculated between 1969 and 2013 with a total reduction in area of 33%. The TSL rose by 92 m between 1985 and 2013 to an altitude of 3005 m. By comparing our results with manually delineated outlines an accuracy of 97.5% was determined. When a confusion matrix was calculated it could be seen that the results contained few false positives but some false negatives which were attributed to seasonal snow, shadows and misclassified debris. Our results correspond broadly with those found in other areas of the European Alps although a heterogeneity in glacier change is observable. We recommend that future glacier mapping investigations should utilise a combination of both SAR coherence data and high-resolution topographic data in order to delineate the extent of both active and stagnant glacier ice. Paper III investigates decadal scale changes in glacier area, velocity and volume in the previously undocumented Manaslu Region, Nepal. Between 2001 and 2013 the glacier area reduced by 8.2% (-0.68% a-1). Simultaneously, the glaciers lowered by -0.21 ± 0.08 m a-1 and had a slightly negative specific mass balance of -0.05 ± 016 m w.e a-1 although mass balances ranged -2.49 ± 2.24 to +0.27 ± 0.30 m w.e a-1 throughout the region. The geodetic mass balance for select glaciers covered by a Corona DEM between 1970 and 2013 was -0.24 ± 0.12 m w.e a-1 which became more negative (-0.51 ± 0.12 m w.e. a-1) between 2005 and 2013. Rates of surface lowering over debriscovered ice increasing by 168% between 1970 – 2000 (0.40 ± 0.18 m a-1) and 2005 – 2013 (1.07 ±0.48 m a-1). The rate of glacier melt varies due to presumed increases in debris thickness at the upper and lower boundaries of the ablation zone, while an area of enhanced glacier downwasting corresponds to the presence of supraglacial lakes and exposed ice. The glacier velocity varies across the region. Many glaciers have stagnant sections towards the glacier termini, and a trend of ongoing stagnation is observable. No relationship exists between trends in glacier area and glacier volume or velocity, although a weak relationship exists between trends in the changes of volume and velocity. The rates of glacier area and velocity change appear to be similar, although the number of glaciers that had records of area, velocity, and volume was few. Our results are comparable to studies looking at mean surface lowerings and geodetic mass balances in other areas of the Himalayas, and point towards heterogeneous yet pronounced mass losses across the Himalaya region

    Automated Detection of Solar Eruptions

    Full text link
    Observation of the solar atmosphere reveals a wide range of motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advancing our understanding the drivers of space weather. Both automated and visual identifications are currently used in identifying CMEs. To date, eruptions near the solar surface (which may be precursors to CMEs) have been identified primarily by visual inspection. Here we report on EruptionPatrol (EP): a software module that is designed to automatically identify eruptions from data collected by SDO/AIA. We describe the method underlying the module and compare its results to previous identifications found in the Heliophysics Event Knowledgebase. EP identifies eruptions events that are consistent with those found by human annotations, but in a significantly more consistent and quantitative manner. Eruptions are found to be distributed within 15Mm of the solar surface. They possess peak speeds ranging from 4 to 100 km/sec and display a power-law probability distribution over that range. These characteristics are consistent with previous observations of prominences.Comment: 6 pages, 4 figures, 7th Solar Information Processing Workshop, to appear in Space Weather and Space Climat

    NASA/MSFC FY88 Global Scale Atmospheric Processes Research Program Review

    Get PDF
    Interest in environmental issues and the magnitude of the environmental changes continues. One way to gain more understanding of the atmosphere is to make measurements on a global scale from space. The Earth Observation System is a series of new sensors to measure globally atmospheric parameters. Analysis of satellite data by developing algorithms to interpret the radiance information improves the understanding and also defines requirements for these sensors. One measure of knowledge of the atmosphere lies in the ability to predict its behavior. Use of numerical and experimental models provides a better understanding of these processes. These efforts are described in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation

    Quarterly literature review of the remote sensing of natural resources

    Get PDF
    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports
    • …
    corecore