4,966 research outputs found

    Small gain theorems for large scale systems and construction of ISS Lyapunov functions

    Full text link
    We consider interconnections of n nonlinear subsystems in the input-to-state stability (ISS) framework. For each subsystem an ISS Lyapunov function is given that treats the other subsystems as independent inputs. A gain matrix is used to encode the mutual dependencies of the systems in the network. Under a small gain assumption on the monotone operator induced by the gain matrix, a locally Lipschitz continuous ISS Lyapunov function is obtained constructively for the entire network by appropriately scaling the individual Lyapunov functions for the subsystems. The results are obtained in a general formulation of ISS, the cases of summation, maximization and separation with respect to external gains are obtained as corollaries.Comment: provisionally accepted by SIAM Journal on Control and Optimizatio

    Numerical Construction of LISS Lyapunov Functions under a Small Gain Condition

    Full text link
    In the stability analysis of large-scale interconnected systems it is frequently desirable to be able to determine a decay point of the gain operator, i.e., a point whose image under the monotone operator is strictly smaller than the point itself. The set of such decay points plays a crucial role in checking, in a semi-global fashion, the local input-to-state stability of an interconnected system and in the numerical construction of a LISS Lyapunov function. We provide a homotopy algorithm that computes a decay point of a monotone op- erator. For this purpose we use a fixed point algorithm and provide a function whose fixed points correspond to decay points of the monotone operator. The advantage to an earlier algorithm is demonstrated. Furthermore an example is given which shows how to analyze a given perturbed interconnected system.Comment: 30 pages, 7 figures, 4 table

    Geometric Properties of Isostables and Basins of Attraction of Monotone Systems

    Get PDF
    In this paper, we study geometric properties of basins of attraction of monotone systems. Our results are based on a combination of monotone systems theory and spectral operator theory. We exploit the framework of the Koopman operator, which provides a linear infinite-dimensional description of nonlinear dynamical systems and spectral operator-theoretic notions such as eigenvalues and eigenfunctions. The sublevel sets of the dominant eigenfunction form a family of nested forward-invariant sets and the basin of attraction is the largest of these sets. The boundaries of these sets, called isostables, allow studying temporal properties of the system. Our first observation is that the dominant eigenfunction is increasing in every variable in the case of monotone systems. This is a strong geometric property which simplifies the computation of isostables. We also show how variations in basins of attraction can be bounded under parametric uncertainty in the vector field of monotone systems. Finally, we study the properties of the parameter set for which a monotone system is multistable. Our results are illustrated on several systems of two to four dimensions.Comment: 12 pages, to appear in IEEE Transaction on Automatic Contro

    On multichannel solutions of nonlinear Schr\"{o}dinger equations: algorithm, analysis and numerical explorations

    Full text link
    We apply the method of modulation equations to numerically solve the NLS with multichannel dynamics, given by a trapped localized state and radiation. This approach employs the modulation theory of Soffer-Weinstein, which gives a system of ODE's coupled to the radiation term, which is valid for all times. We comment on the differences of this method from the well-known method of collective coordinates.Comment: 16 pages, 9 figures. Added a comparison to collective coordinates scheme that includes a radiation ter

    A modulation equations approach for numerically solving the moving soliton and radiation solutions of NLS

    Full text link
    Based on our previous work for solving the nonlinear Schrodinger equation with multichannel dynamics that is given by a localized standing wave and radiation, in this work we deal with the multichannel solution which consists of a moving soliton and radiation. We apply the modulation theory to give a system of ODEs coupled to the radiation term for describing the solution, which is valid for all times. The modulation equations are solved accurately by the proposed numerical method. The soliton and radiation are captured separately in the computation, and they are solved on the translated domain that is moving with them. Thus for a fixed finite physical domain in the lab frame, the multichannel solution can pass through the boundary naturally, which can not be done by imposing any existing boundary conditions. We comment on the differences of this method from the collective coordinates.Comment: 19 pages, 7 figures. To appear on Phys. D. arXiv admin note: text overlap with arXiv:1404.115

    First order algorithms in variational image processing

    Get PDF
    Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form D(Ku)+αR(u)minu{\cal D}(Ku) + \alpha {\cal R} (u) \rightarrow \min_u ; where the functional D{\cal D} is a data fidelity term also depending on some input data ff and measuring the deviation of KuKu from such and R{\cal R} is a regularization functional. Moreover KK is a (often linear) forward operator modeling the dependence of data on an underlying image, and α\alpha is a positive regularization parameter. While D{\cal D} is often smooth and (strictly) convex, the current practice almost exclusively uses nonsmooth regularization functionals. The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof or 1\ell_1-norms of coefficients arising from scalar products with some frame system. The efficient solution of such variational problems in imaging demands for appropriate algorithms. Taking into account the specific structure as a sum of two very different terms to be minimized, splitting algorithms are a quite canonical choice. Consequently this field has revived the interest in techniques like operator splittings or augmented Lagrangians. Here we shall provide an overview of methods currently developed and recent results as well as some computational studies providing a comparison of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure
    corecore