23,894 research outputs found

    SHrinkage Covariance Estimation Incorporating Prior Biological Knowledge with Applications to High-Dimensional Data

    Get PDF
    In ``-omic data'' analysis, information on the structure of covariates are broadly available either from public databases describing gene regulation processes and functional groups such as the Kyoto encyclopedia of genes and genomes (KEGG), or from statistical analyses -- for example in form of partial correlation estimators. The analysis of transcriptomic data might benefit from the incorporation of such prior knowledge. In this paper we focus on the integration of structured information into statistical analyses in which at least one major step involves the estimation of a (high-dimensional) covariance matrix. More precisely, we revisit the recently proposed ``SHrinkage Incorporating Prior'' (SHIP) covariance estimation method which takes into account the group structure of the covariates, and suggest to integrate the SHIP covariance estimator into various multivariate methods such as linear discriminant analysis (LDA), global analysis of covariance (GlobalANCOVA), and regularized generalized canonical correlation analysis (RGCCA). We demonstrate the use of the resulting new methods based on simulations and discuss the benefit of the integration of prior information through the SHIP estimator. Reproducible R codes are available at http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/020_professuren/boulesteix/shipproject/index.html

    Generation of Whole-Body Expressive Movement Based on Somatical Theories

    Get PDF
    An automatic choreography method to generate lifelike body movements is proposed. This method is based on somatics theories that are conventionally used to evaluate human’s psychological and developmental states by analyzing the body movement. The idea of this paper is to use the theories in the inverse way: to facilitate generation of artificial body movements that are plausible regarding evolutionary, developmental and emotional states of robots or other non-living movers. This paper reviews somatic theories and describes a strategy for implementations of automatic body movement generation. In addition, a psychological experiment is reported to verify expression ability on body movement rhythm. This method facilitates to choreographing body movement of humanoids, animal-shaped robots, and computer graphics characters in video games

    Optimisation of composite boat hulls using first principles and design rules

    No full text
    The design process is becoming increasingly complex with designers balancing societal, environmental and political issues. Composite materials are attractive to designers due to excellent strength to weight ratio, low corrosion and ability to be tailored to the application. One problem with composite materials can be the low stiffness that they exhibit and as such for many applications they are stiffened. These stiffened structures create a complex engineering problem by which they must be designed to have the lowest cost and mass and yet withstand loads. This paper therefore examines the way in which rapid assessment of stiffened boat structures can be performed for the concept design stage. Navier grillage method is combined with genetic algorithms to produce panels optimised for mass and cost. These models are constrained using design rules, in this case ISO 12215 and Lloyd's Register Rules for Special Service Craft. The results show a method that produces a reasonable stiffened structure rapidly that could be used in advanced concept design or early detailed design to reduce design time
    corecore