2 research outputs found

    Conflict Detection and Resolution in Table Top Scenarios for Human-Robot Interaction

    Full text link
    As in any interaction process, misunderstandings, ambiguity, and failures to correctly understand the interaction partner are bound to happen in human-robot interaction. We term these failures 'conflicts' and are interested in both conflict detection and conflict resolution. In that, we focus on the robot's perspective. For the robot, conflicts may occur because of errors in its perceptual processes or because of ambiguity stemming from human input. This poster presents a brief system overview, and details Here, we briefly outline the project's motivation and setting, introduce the general processing framework, and then present two kinds of conflicts in some more detail: 1) a failure to identify a relevant object at all; 2) ambiguity emerging from multiple matches in scene perception

    On effective human robot interaction based on recognition and association

    Full text link
    Faces play a magnificent role in human robot interaction, as they do in our daily life. The inherent ability of the human mind facilitates us to recognize a person by exploiting various challenges such as bad illumination, occlusions, pose variation etc. which are involved in face recognition. But it is a very complex task in nature to identify a human face by humanoid robots. The recent literatures on face biometric recognition are extremely rich in its application on structured environment for solving human identification problem. But the application of face biometric on mobile robotics is limited for its inability to produce accurate identification in uneven circumstances. The existing face recognition problem has been tackled with our proposed component based fragmented face recognition framework. The proposed framework uses only a subset of the full face such as eyes, nose and mouth to recognize a person. It's less searching cost, encouraging accuracy and ability to handle various challenges of face recognition offers its applicability on humanoid robots. The second problem in face recognition is the face spoofing, in which a face recognition system is not able to distinguish between a person and an imposter (photo/video of the genuine user). The problem will become more detrimental when robots are used as an authenticator. A depth analysis method has been investigated in our research work to test the liveness of imposters to discriminate them from the legitimate users. The implication of the previous earned techniques has been used with respect to criminal identification with NAO robot. An eyewitness can interact with NAO through a user interface. NAO asks several questions about the suspect, such as age, height, her/his facial shape and size etc., and then making a guess about her/his face
    corecore