1,158 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Sparse Coding on Symmetric Positive Definite Manifolds using Bregman Divergences

    Full text link
    This paper introduces sparse coding and dictionary learning for Symmetric Positive Definite (SPD) matrices, which are often used in machine learning, computer vision and related areas. Unlike traditional sparse coding schemes that work in vector spaces, in this paper we discuss how SPD matrices can be described by sparse combination of dictionary atoms, where the atoms are also SPD matrices. We propose to seek sparse coding by embedding the space of SPD matrices into Hilbert spaces through two types of Bregman matrix divergences. This not only leads to an efficient way of performing sparse coding, but also an online and iterative scheme for dictionary learning. We apply the proposed methods to several computer vision tasks where images are represented by region covariance matrices. Our proposed algorithms outperform state-of-the-art methods on a wide range of classification tasks, including face recognition, action recognition, material classification and texture categorization

    Action Recognition in Video Using Sparse Coding and Relative Features

    Full text link
    This work presents an approach to category-based action recognition in video using sparse coding techniques. The proposed approach includes two main contributions: i) A new method to handle intra-class variations by decomposing each video into a reduced set of representative atomic action acts or key-sequences, and ii) A new video descriptor, ITRA: Inter-Temporal Relational Act Descriptor, that exploits the power of comparative reasoning to capture relative similarity relations among key-sequences. In terms of the method to obtain key-sequences, we introduce a loss function that, for each video, leads to the identification of a sparse set of representative key-frames capturing both, relevant particularities arising in the input video, as well as relevant generalities arising in the complete class collection. In terms of the method to obtain the ITRA descriptor, we introduce a novel scheme to quantify relative intra and inter-class similarities among local temporal patterns arising in the videos. The resulting ITRA descriptor demonstrates to be highly effective to discriminate among action categories. As a result, the proposed approach reaches remarkable action recognition performance on several popular benchmark datasets, outperforming alternative state-of-the-art techniques by a large margin.Comment: Accepted to CVPR 201

    Re-identifying people in the crowd

    Get PDF
    Developing an automated surveillance system is of great interest for various reasons including forensic and security applications. In the case of a network of surveillance cameras with non-overlapping fields of view, person detection and tracking alone are insufficient to track a subject of interest across the network. In this case, instances of a person captured in one camera view need to be retrieved among a gallery of different people, in other camera views. This vision problem is commonly known as person re-identification (re-id). Cross-view instances of pedestrians exhibit varied levels of illumination, viewpoint, and pose variations which makes the problem very challenging. Despite recent progress towards improving accuracy, existing systems suffer from low applicability to real-world scenarios. This is mainly caused by the need for large amounts of annotated data from pairwise camera views to be available for training. Given the difficulty of obtaining such data and annotating it, this thesis aims to bring the person re-id problem a step closer to real-world deployment. In the first contribution, the single-shot protocol, where each individual is represented by a pair of images that need to be matched, is considered. Following the extensive annotation of four datasets for six attributes, an evaluation of the most widely used feature extraction schemes is conducted. The results reveal two high-performing descriptors among those evaluated, and show illumination variation to have the most impact on re-id accuracy. Motivated by the wide availability of videos from surveillance cameras and the additional visual and temporal information they provide, video-based person re-id is then investigated, and a su-pervised system is developed. This is achieved by improving and extending the best performing image-based person descriptor into three dimensions and combining it with distance metric learn-ing. The system obtained achieves state-of-the-art results on two widely used datasets. Given the cost and difficulty of obtaining labelled data from pairwise cameras in a network to train the model, an unsupervised video-based person re-id method is also developed. It is based on a set-based distance measure that leverages rank vectors to estimate the similarity scores between person tracklets. The proposed system outperforms other unsupervised methods by a large margin on two datasets while competing with deep learning methods on another large-scale dataset
    corecore