639 research outputs found

    Representational principles of function generalization

    Get PDF
    Generalization is at the core of human intelligence. When the relationship between continuous-valued data is generalized, generalization amounts to function learning. Function learning is important for understanding human cognition, as many everyday tasks and problems involve learning how quantities relate and subsequently using this knowledge to predict novel relationships. While function learning has been studied in psychology since the early 1960s, this thesis argues that questions regarding representational characteristics have not been adequately addressed in previous research. Previous accounts of function learning have often proposed one-size-fits-all models that excel at capturing how participants learn and extrapolate. In these models, learning amounts to learning the details of the presented patterns. Instead, this thesis presents computational and empirical results arguing that participants often learn abstract features of the data, such as the type of function or the variability of features of the function, instead of the details of the function. While previous work has emphasized domain-general inductive biases and learning rates, I propose that these biases are more flexible and adaptive than previously suggested. Given contextual information that sequential tasks share the same structure, participants can transfer knowledge from previous training to inform their generalizations. Furthermore, this thesis argues that function representations can be composed to form more complex hypotheses, and humans are perceptive to, and sometimes generalize according to these compositional features. Previous accounts of function learning had to postulate a fixed set of candidate functions that form a partic ipants’ hypothesis space, which ultimately struggled to account for the variety of extrapolations people can produce. In contrast, this thesis’s results suggest that a small set of broadly applicable functions, in combination with compositional principles, can produce flexible and productive generalization

    A Primer on Bayesian Neural Networks: Review and Debates

    Full text link
    Neural networks have achieved remarkable performance across various problem domains, but their widespread applicability is hindered by inherent limitations such as overconfidence in predictions, lack of interpretability, and vulnerability to adversarial attacks. To address these challenges, Bayesian neural networks (BNNs) have emerged as a compelling extension of conventional neural networks, integrating uncertainty estimation into their predictive capabilities. This comprehensive primer presents a systematic introduction to the fundamental concepts of neural networks and Bayesian inference, elucidating their synergistic integration for the development of BNNs. The target audience comprises statisticians with a potential background in Bayesian methods but lacking deep learning expertise, as well as machine learners proficient in deep neural networks but with limited exposure to Bayesian statistics. We provide an overview of commonly employed priors, examining their impact on model behavior and performance. Additionally, we delve into the practical considerations associated with training and inference in BNNs. Furthermore, we explore advanced topics within the realm of BNN research, acknowledging the existence of ongoing debates and controversies. By offering insights into cutting-edge developments, this primer not only equips researchers and practitioners with a solid foundation in BNNs, but also illuminates the potential applications of this dynamic field. As a valuable resource, it fosters an understanding of BNNs and their promising prospects, facilitating further advancements in the pursuit of knowledge and innovation.Comment: 65 page

    Big Data Analytics and Information Science for Business and Biomedical Applications II

    Get PDF
    The analysis of big data in biomedical, business and financial research has drawn much attention from researchers worldwide. This collection of articles aims to provide a platform for an in-depth discussion of novel statistical methods developed for the analysis of Big Data in these areas. Both applied and theoretical contributions to these areas are showcased

    Deep Learning for Recommender Systems

    Get PDF
    The widespread adoption of the Internet has led to an explosion in the number of choices available to consumers. Users begin to expect personalized content in modern E-commerce, entertainment and social media platforms. Recommender Systems (RS) provide a critical solution to this problem by maintaining user engagement and satisfaction with personalized content. Traditional RS techniques are often linear limiting the expressivity required to model complex user-item interactions and require extensive handcrafted features from domain experts. Deep learning demonstrated significant breakthroughs in solving problems that have alluded the artificial intelligence community for many years advancing state-of-the-art results in domains such as computer vision and natural language processing. The recommender domain consists of heterogeneous and semantically rich data such as unstructured text (e.g. product descriptions), categorical attributes (e.g. genre of a movie), and user-item feedback (e.g. purchases). Deep learning can automatically capture the intricate structure of user preferences by encoding learned feature representations from high dimensional data. In this thesis, we explore five novel applications of deep learning-based techniques to address top-n recommendation. First, we propose Collaborative Memory Network, which unifies the strengths of the latent factor model and neighborhood-based methods inspired by Memory Networks to address collaborative filtering with implicit feedback. Second, we propose Neural Semantic Personalized Ranking, a novel probabilistic generative modeling approach to integrate deep neural network with pairwise ranking for the item cold-start problem. Third, we propose Attentive Contextual Denoising Autoencoder augmented with a context-driven attention mechanism to integrate arbitrary user and item attributes. Fourth, we propose a flexible encoder-decoder architecture called Neural Citation Network, embodying a powerful max time delay neural network encoder augmented with an attention mechanism and author networks to address context-aware citation recommendation. Finally, we propose a generic framework to perform conversational movie recommendations which leverages transfer learning to infer user preferences from natural language. Comprehensive experiments validate the effectiveness of all five proposed models against competitive baseline methods and demonstrate the successful adaptation of deep learning-based techniques to the recommendation domain

    Automatic machine learning:methods, systems, challenges

    Get PDF

    Automatic machine learning:methods, systems, challenges

    Get PDF
    This open access book presents the first comprehensive overview of general methods in Automatic Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first international challenge of AutoML systems. The book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. Many of the recent machine learning successes crucially rely on human experts, who select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters; however the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself
    • …
    corecore