213 research outputs found

    Comparison of Small Baseline Interferometric SAR Processors for Estimating Ground Deformation

    Get PDF
    The small Baseline Synthetic Aperture Radar (SAR) Interferometry (SBI) technique has been widely and successfully applied in various ground deformation monitoring applications. Over the last decade, a variety of SBI algorithms have been developed based on the same fundamental concepts. Recently developed SBI toolboxes provide an open environment for researchers to apply different SBI methods for various purposes. However, there has been no thorough discussion that compares the particular characteristics of different SBI methods and their corresponding performance in ground deformation reconstruction. Thus, two SBI toolboxes that implement a total of four SBI algorithms were selected for comparison. This study discusses and summarizes the main differences, pros and cons of these four SBI implementations, which could help users to choose a suitable SBI method for their specific application. The study focuses on exploring the suitability of each SBI module under various data set conditions, including small/large number of interferograms, the presence or absence of larger time gaps, urban/vegetation ground coverage, and temporally regular/irregular ground displacement with multiple spatial scales. Within this paper we discuss the corresponding theoretical background of each SBI method. We present a performance analysis of these SBI modules based on two real data sets characterized by different environmental and surface deformation conditions. The study shows that all four SBI processors are capable of generating similar ground deformation results when the data set has sufficient temporal sampling and a stable ground backscatter mechanism like urban area. Strengths and limitations of different SBI processors were analyzed based on data set configuration and environmental conditions and are summarized in this paper to guide future users of SBI techniques

    Railways' stability observed in Campania (Italy) by InSAR data

    Get PDF
    Campania region is characterized by intense urbanization, active volcanoes, subsidence, and landslides; therefore, the stability of public transportation structures is highly concerned. We have app..

    Sentinel-1 data exploitation for terrain deformation monitoring

    Get PDF
    Persistent Scatterer interferometry (PSI) is a group of advanced differential interferometric Synthetic Aperture Radar (SAR) techniques used to measure and monitor terrain deformation. Sentinel-1 has improved the data acquisition throughout and, compared to previous sensors, increased considerably the Differential Interferometric SAR (DInSAR) and PSI deformation monitoring potential. The effect of the refractive atmosphere on the interferometric phase and phase unwrapping ambiguity are two critical issues of InSAR. The low density of Persistent Scatterer (PS) in non-urban areas, another critical issue, has inspired the development of alternative approaches and refinement of the PS chains. Along with the efforts to develop methods to mitigate the three above-mentioned problems, the work presented in this thesis also deals with the presence of a new signal in multilooked interferograms which cannot be explained by noise, atmospheric or earth surface topography changes. This paper describes a method for atmospheric phase screen estimation using rain station weather data and three different data driven procedures to obtain terrain deformation maps. These approaches aim to exploit Sentinel-1 highly coherent interferograms and their short revisit time. The first method called the splitting makes uses of the power spectrum of the interferograms to split the signals into high and low frequency, and following a mutually exclusive consecutive processing chain for the two sets. This approach has resulted in greater density of PSs with decreased phase unwrapping errors. The second approach, called Direct Integration (DI), aims at providing a very fast and straightforward approach to screen wide areas and easily detect active areas. This approach fully exploits the coherent interferograms from the consecutive images provided by Sentinel-1 resulting in a very high sampling density. However, it lacks robustness and its usability lays on the operator experience. The third method, called PSIG (Persistent Scatterer Interferometry Geomatics) short temporal baseline, provides a constrained application of the PSIG chain, the CTTC approach to the PSI. It uses short temporal baseline interferograms and do not assume any deformation model for point selection. It is also quite a straightforward approach and a perfect complement to the direct integration approach. It improves the performances of the standard PSIG approach, increasing the PS density and providing robust measurements. The effectiveness of the approaches is illustrated through analyses performed on different test sites.La técnica Persistent Scatterer Interferometry (PSI) es un grupo de técnicas avanzadas de radar de apertura sintética interferométrica diferencial (SAR) que se utiliza para medir y monitorear losmovimientos del terreno. Sentinel-1 ha mejorado sensiblemente la adquisición de datos y, en comparación con los sensores SAR anteriores, ha aumentado considerablemente el potencial uso de la interferometría diferencial SAR y del PSI para medir y monitorizar desplazamientos del terreno. El efecto de la atmósfera sobre la fase interferométrica y la naturaleza ambigua de esta son dos cuestiones críticas de InSAR. Además, la baja densidad de Persistent Scatterer (PSs) en áreas no urbanas, es otro tema crítico que ha inspirado el desarrollo de enfoques alternativos y el refinamiento de las cadenas PS existentes. Junto con los esfuerzos por desarrollar métodos para mitigar los tres problemas antes mencionados, el trabajo presentado en esta tesis también aborda la presencia de una nueva señal en interferogramas multilooked que no puede explicarse por cambios de ruido, atmosféricos o topográficos de la superficie terrestre. Esta tesis describe un método para la estimación de la fase atmosférica utilizando datos meteorológicos adquiridos in-situ y tres aproximaciones diferentes basadas en datos Sentinel-1 para obtener mapas de deformación del terreno. Estos enfoques tienen como objetivo explotar los interferogramas altamente coherentes proporcionados por Sentinel-1 gracias a su corto tiempo de revisita. El primer método llamado división hace uso de filtros en el dominico frecuencial de los interferogramas para dividir las señales en alta y baja frecuencia, y siguiendo una cadena de procesamiento consecutiva independiente para cada clase. Este enfoque ha dado como resultado una mejora substancial de PS minimizando los errores debidos al desenrollado de fase. El segundo enfoque, llamado Integración Directa (DI), tiene como objetivo proporcionar un enfoque muy rápido y sencillo para examinar áreas amplias y detectar fácilmente áreas activas. Este enfoque aprovecha al máximo los interferogramas coherentes de las imágenes consecutivas proporcionadas por Sentinel-1, lo que da como resultado una densidad de muestreo muy alta. Sin embargo, carece de robustez y su usabilidad depende de la experiencia del operador. El tercer método, llamado PSIG (Persistent Scatterer Interferometry Geomatics) de línea de base temporal corta, proporciona una aplicación restringida de la cadena PSIG, el enfoque CTTC para el PSI. Utiliza interferogramas de línea base temporales cortos y no asume ningún modelo de deformación para la selección de puntos. Su uso es complementario al enfoque de integración directa proporcionando robustez en las zonas. Mejora el rendimiento del enfoque estándar de PSIG, aumentando la densidad de PS y proporcionando mediciones robustas. La efectividad de los enfoques se ilustra a través de análisis realizados en diferentes sitios de prueba.Postprint (published version

    Advanced Multitemporal Phase Unwrapping Techniques for DInSAR Analyses

    Get PDF

    Ground-based synthetic aperture radar (GBSAR) interferometry for deformation monitoring

    Get PDF
    Ph. D ThesisGround-based synthetic aperture radar (GBSAR), together with interferometry, represents a powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be collected with adjustable temporal resolutions through either continuous or discontinuous mode. The goal of this research is to develop a framework to effectively utilise GBSAR for deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-time capability. To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been proposed to address existing issues in conventional interferometry for GBSAR deformation monitoring. The proposed interferometric algorithms include a new non-local method for the accurate estimation of coherence and interferometric phase, a new approach to selecting coherent pixels with the aim of maximising the density of selected pixels and optimizing the reliability of time series analysis, and a rigorous model for the correction of atmospheric and repositioning errors. On the basis of these algorithms, two complete interferometric processing chains have been developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. The continuous chain is able to process infinite incoming images in real time and extract the evolution of surface movements through temporally coherent pixels. The discontinuous chain integrates additional automatic coregistration of images and correction of repositioning errors between different campaigns. Successful deformation monitoring applications have been completed, including three continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-accuracy GBSAR interferometric measurement. Significant deformation signals were detected from the three continuous applications and no deformation from the discontinuous. The achieved results are justified quantitatively via a defined precision indicator for the time series estimation and validated qualitatively via a priori knowledge of these observing sites.China Scholarship Council (CSC), Newcastle Universit

    Railways’ Stability Observation by Satellite Radar Images

    Get PDF
    Remote sensing has many vital civilian applications. Space-borne Interferometric Synthetic Aperture Radar has been used to measure the Earth’s surface deformation widely. In particular, Persistent Scatterer Interferometry (PSI) is designed to estimate the temporal characteristics of the Earth’s deformation rates from multiple InSAR images acquired over time. This chapter reviews the space-borne Differential Interferometric Synthetic Aperture Radar techniques that have shown their capabilities in monitoring of railways displacements. After description of the current state of the art and potentials of the available radar remote sensing techniques, one case study is examined, pertaining to a railway bridge in the Campania region, Italy

    High-resolution deformation measurement using "Persistent Scatterer Interferometry"

    Get PDF
    Persistent Scatterer Interferometry (PSI) is a group of advanced differential interferometric SAR techniques that are used to measure and monitor terrain deformation. Different PSI techniques have been proposed in the last two decades. In this thesis, the two PSI chains implemented and used at the Geomatics division of CTTC are described: the local area PSI and the PSIG chains. The first part of the thesis is devoted to the local area PSI chain, used to analyse the deformations over small areas. The chain includes a linear deformation model to directly deal with interferometric wrapped phases. Moreover, it does not directly involve the estimation of the APS, thus simplifying the procedure and its computational cost. The chain has been tested using different types of SAR data. The availability of high resolution X-band SAR data has led to an improvement of the PSI results with respect to C-band data. The higher image resolution and phase quality implies an increase of the PS density, an improvement in the estimation precision of the residual topographic error and a higher sensibility to very small deformations, including the displacements caused by thermal dilation. An extension of the classical PSI linear deformation model has been proposed, to account for the thermal dilation effects. This allows obtaining a new PSI outcome, the thermal dilation parameter, which opens new interesting applications since it provides information on the physical properties of single objects, i.e. the coefficient of thermal expansion, and the static structures of the same objects. The second part of the thesis describes the PSIG chain, whose aim was to extend the interferometric processing to wider areas. The ability to cover wide areas is essential to obtain a unique and consistent deformation monitoring for the available SAR image full scenes, i.e. typically 30 by 50 km for TerraSAR-X, 40 by 40 km for CosmoSkyMed and 100 by 100 km for ASAR ENVISAT and ERS. This is particularly important for the forthcoming C-band Sentinel SAR data that will cover 250 by 250 km with a single image scene. The key steps of the PSIG procedure include a new selection of candidate PSs based on a phase similitude criteria and a 2+1D phase unwrapping algorithm. The procedure offers different tools to control the quality of the processing steps. It has been successfully tested over urban, rural and vegetated areas using X-band PSI data. The performance of the PSIG chain is illustrated and discussed in detail, analysing the procedure step by step.Persistent Scatterer Interferometry (PSI) és un grup de tècniques avançades d'interferometria diferencial SAR que s'utilitzen per mesurar i monitoritzar deformacions del terreny. Durant les últimes dues dècades s’han proposat diverses tècniques PSI. En aquesta tesi es descriuen les dues cadenes PSI implementades i utilitzades en la divisió de Geomàtica del CTTC: la cadena PSI d’àrea local i la cadena PSIG. La primera part de la tesi està dedicada a la cadena PSI d’àrea local, que s'utilitza per analitzar deformacions en zones d’extensió limitada. La cadena inclou un model de deformació lineal per tractar directament amb les fases interferomètriques wrapped. En canvi, no estima directament la component atmosfèrica, cosa que simplifica el procediment i el seu cost computacional. La cadena s’ha provat sobre diferents tipus de dades SAR. La disponibilitat de dades SAR d’alta resolució en banda X ha donat lloc a una millora dels resultats del PSI respecte a les dades en banda C. La resolució més gran de la imatge i la qualitat de la fase impliquen un augment de la densitat de PS, una millora en la precisió de l'estimació de l'error topogràfic residual i una sensibilitat més alta a deformacions subtils, incloent-hi els desplaçaments causats per la dilatació tèrmica. Per tenir en compte els efectes de la dilatació tèrmica, s'ha proposat una extensió del model PSI clàssic que ens permet obtenir un nou producte PSI: el paràmetre de dilatació tèrmica. Aquest paràmetre obre noves aplicacions interessants: proporciona informació relacionada amb les propietats físiques dels objectes mesurats –com el coeficient d'expansió tèrmica– i amb la seva pròpia estructura estàtica. La segona part de la tesi descriu la cadena PSIG, l'objectiu de la qual és estendre el processament interferomètric a àrees més extenses. La capacitat de cobrir àrees grans és fonamental per obtenir un únic mapa global de deformacions que sigui consistent i cobreixi l’extensió sencera de les imatges SAR disponibles, de 30 km per 50 km per TerraSAR-X, de 40 km per 40 km per CosmoSkyMed i de 100 km per 100 km per ASAR-ENVISAT i ERS. Això és particularment important tenint en compte la propera disponibilitat de les dades del satèl•lit Sentinel, que opera en banda C i cobrirà 250 km per 250 km amb una sola imatge. Els passos clau del procediment PSIG són una nova selecció de PS candidats en base a un criteri de similitud de fase i un algoritme de 2+1D phase unwrapping. El procediment ofereix diferents eines per controlar la qualitat dels diferents passos del processament. La cadena PSIG s’ha utilitzat amb èxit en àrees urbanes, rurals i amb vegetació utilitzant dades PSI en banda X. El funcionament de la cadena PSIG s'il•lustra i es descriu en detall, analitzant el procediment pas a pas
    • …
    corecore