12,830 research outputs found

    The bipartite unconstrained 0–1 quadratic programming problem: Polynomially solvable cases

    Get PDF
    We consider the bipartite unconstrained 0-1 quadratic programming problem (BQP01) which is a generalization of the well studied unconstrained 0-1 quadratic programming problem (QP01). BQP01 has numerous applications and the problem is known to be MAX SNP hard. We show that if the rank of an associated m×n cost matrix Q=(qij) is fixed, then BQP01 can be solved in polynomial time. When Q is of rank one, we provide an O(nlogn) algorithm and this complexity reduces to O(n) with additional assumptions. Further, if qij=ai+bj for some ai and bj, then BQP01 is shown to be solvable in O(mnlogn) time. By restricting m=O(logn), we obtain yet another polynomially solvable case of BQP01 but the problem remains MAX SNP hard if m=O(nk) for a fixed k. Finally, if the minimum number of rows and columns to be deleted from Q to make the remaining matrix non-negative is O(logn), then we show that BQP01 is polynomially solvable but it is NP-hard if this number is O(nk) for any fixed k

    A Revisit to Quadratic Programming with One Inequality Quadratic Constraint via Matrix Pencil

    Full text link
    The quadratic programming over one inequality quadratic constraint (QP1QC) is a very special case of quadratically constrained quadratic programming (QCQP) and attracted much attention since early 1990's. It is now understood that, under the primal Slater condition, (QP1QC) has a tight SDP relaxation (PSDP). The optimal solution to (QP1QC), if exists, can be obtained by a matrix rank one decomposition of the optimal matrix X? to (PSDP). In this paper, we pay a revisit to (QP1QC) by analyzing the associated matrix pencil of two symmetric real matrices A and B, the former matrix of which defines the quadratic term of the objective function whereas the latter for the constraint. We focus on the \undesired" (QP1QC) problems which are often ignored in typical literature: either there exists no Slater point, or (QP1QC) is unbounded below, or (QP1QC) is bounded below but unattainable. Our analysis is conducted with the help of the matrix pencil, not only for checking whether the undesired cases do happen, but also for an alternative way to compute the optimal solution in comparison with the usual SDP/rank-one-decomposition procedure.Comment: 22 pages, 0 figure

    The linearization problem of a binary quadratic problem and its applications

    Full text link
    We provide several applications of the linearization problem of a binary quadratic problem. We propose a new lower bounding strategy, called the linearization-based scheme, that is based on a simple certificate for a quadratic function to be non-negative on the feasible set. Each linearization-based bound requires a set of linearizable matrices as an input. We prove that the Generalized Gilmore-Lawler bounding scheme for binary quadratic problems provides linearization-based bounds. Moreover, we show that the bound obtained from the first level reformulation linearization technique is also a type of linearization-based bound, which enables us to provide a comparison among mentioned bounds. However, the strongest linearization-based bound is the one that uses the full characterization of the set of linearizable matrices. Finally, we present a polynomial-time algorithm for the linearization problem of the quadratic shortest path problem on directed acyclic graphs. Our algorithm gives a complete characterization of the set of linearizable matrices for the quadratic shortest path problem
    • …
    corecore