575 research outputs found

    Development of a Physical Shoulder Simulator for the Training of Basic Arthroscopic Skills

    Get PDF
    Increasingly, shoulder surgeries are performed using arthroscopic techniques, leading to reduced tissue damage and shorter patient recovery times. Orthopaedic training programs are responding to the increased demand for arthroscopic surgeries by incorporating arthroscopic skills into their residency curriculums. A need for accessible and effective training tools exists. This thesis describes the design and development of a physical shoulder simulator for training basic arthroscopy skills such as triangulation, orientation, and navigation of the anatomy. The simulator can be used in either the lateral decubitus or beach chair orientation and accommodates wet or dry practice. Sensors embedded in the simulator provide a means to assess performance. A study was conducted to determine the effectiveness of the simulator. Novice subjects improved their performance after practicing with the simulator. A survey completed by experts, recognized the simulator as a valuable tool for training novice surgeons in basic arthroscopic skills

    Immersive virtual reality enables technical skill acquisition for scrub nurses in complex revision total knee arthroplasty.

    Get PDF
    INTRODUCTION: Immersive Virtual Reality (iVR) is a novel technology which can enhance surgical training in a virtual environment without supervision. However, it is untested for the training to select, assemble and deliver instrumentation in orthopaedic surgery-typically performed by scrub nurses. This study investigates the impact of an iVR curriculum on this facet of the technically demanding revision total knee arthroplasty. MATERIALS AND METHODS: Ten scrub nurses completed training in four iVR sessions over a 4-week period. Initially, nurses completed a baseline real-world assessment, performing their role with real equipment in a simulated operation assessment. Each subsequent iVR session involved a guided mode, where the software taught participants the procedural choreography and assembly of instrumentation in a simulated operating room. In the latter three sessions, nurses also undertook an assessment in iVR. Outcome measures were related to procedural sequence, duration of surgery and efficiency of movement. Transfer of skills from iVR to the real world was assessed in a post-training simulated operation assessment. A pre- and post-training questionnaire assessed the participants knowledge, confidence and anxiety. RESULTS: Operative time reduced by an average of 47% across the 3 unguided sessions (mean 55.5 ± 17.6 min to 29.3 ± 12.1 min, p > 0.001). Assistive prompts reduced by 75% (34.1 ± 16.8 to 8.6 ± 8.8, p < 0.001), dominant hand motion by 28% (881.3 ± 178.5 m to 643.3 ± 119.8 m, p < 0.001) and head motion by 36% (459.9 ± 99.7 m to 292.6 ± 85.3 m, p < 0.001). Real-world skill improved from 11% prior to iVR training to 84% correct post-training. Participants reported increased confidence and reduced anxiety in scrubbing for rTKA procedures (p < 0.001). CONCLUSIONS: For scrub nurses, unfamiliarity with complex surgical procedures or equipment is common. Immersive VR training improved their understanding, technical skills and efficiency. These iVR-learnt skills transferred into the real world

    Determination of critical factors for fast and accurate 2D medical image deformation

    Get PDF
    The advent of medical imaging technology enabled physicians to study patient anatomy non-invasively and revolutionized the medical community. As medical images have become digitized and the resolution of these images has increased, software has been developed to allow physicians to explore their patients\u27 image studies in an increasing number of ways by allowing viewing and exploration of reconstructed three-dimensional models. Although this has been a boon to radiologists, who specialize in interpreting medical images, few software packages exist that provide fast and intuitive interaction for other physicians. In addition, although the users of these applications can view their patient data at the time the scan was taken, the placement of the tissues during a surgical intervention is often different due to the position of the patient and methods used to provide a better view of the surgical field. None of the commonly available medical image packages allow users to predict the deformation of the patient\u27s tissues under those surgical conditions. This thesis analyzes the performance and accuracy of a less computationally intensive yet physically-based deformation algorithm- the extended ChainMail algorithm. The proposed method allows users to load DICOM images from medical image studies, interactively classify the tissues in those images according to their properties under deformation, deform the tissues in two dimensions, and visualize the result. The method was evaluated using data provided by the Truth Cube experiment, where a phantom made of material with properties similar to liver under deformation was placed under varying amounts of uniaxial strain. CT scans were before and after the deformations. The deformation was performed on a single DICOM image from the study that had been manually classified as well as on data sets generated from that original image. These generated data sets were ideally segmented versions of the phantom images that had been scaled to varying fidelities in order to evaluate the effect of image size on the algorithm\u27s accuracy and execution time. Two variations of the extended ChainMail algorithm parameters were also implemented for each of the generated data sets in order to examine the effect of the parameters. The resultant deformations were compared with the actual deformations as determined by the Truth Cube experimenters. For both variations of the algorithm parameters, the predicted deformations at 5% uniaxial strain had an RMS error of a similar order of magnitude to the errors in a finite element analysis performed by the truth cube experimenters for the deformations at 18.25% strain. The average error was able to be reduced by approximately between 10-20% for the lower fidelity data sets through the use of one of the parameter schemes, although the benefit decreased as the image size increased. When the algorithm was evaluated under 18.25% strain, the average errors were more than 8 y times that of the errors in the finite element analysis. Qualitative analysis of the deformed images indicated differing degrees of accuracy across the ideal image set, with the largest displacements estimated closer to the initial point of deformation. This is hypothesized to be a result of the order in which deformation was processed for points in the image. The algorithm execution time was examined for the varying generated image fidelities. For a generated image that was approximately 18.5% of the size of the tissue in the original image, the execution time was less than 15 seconds. In comparison, the algorithm processing time for the full-scale image was over 3 y hours. The analysis of the extended ChainMail algorithm for use in medical image deformation emphasizes the importance of the choice of algorithm parameters on the accuracy of the deformations and of data set size on the processing time

    A Virtual University Infrastructure For Orthopaedic Surgical Training With Integrated Simulation

    No full text
    This thesis pivots around the fulcrum of surgical, educational and technological factors. Whilst there is no single conclusion drawn, it is a multidisciplinary thesis exploring the juxtaposition of different academic domains that have a significant influence upon each other. The relationship centres on the engineering and computer science factors in learning technologies for surgery. Following a brief introduction to previous efforts developing surgical simulation, this thesis considers education and learning in orthopaedics, the design and building of a simulator for shoulder surgery. The thesis considers the assessment of such tools and embedding into a virtual learning environment. It explains how the performed experiments clarified issues and their actual significance. This leads to discussion of the work and conclusions are drawn regarding the progress of integration of distributed simulation within the healthcare environment, suggesting how future work can proceed

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    Augmented Reality: Mapping Methods and Tools for Enhancing the Human Role in Healthcare HMI

    Get PDF
    Background: Augmented Reality (AR) represents an innovative technology to improve data visualization and strengthen the human perception. Among Human–Machine Interaction (HMI), medicine can benefit most from the adoption of these digital technologies. In this perspective, the literature on orthopedic surgery techniques based on AR was evaluated, focusing on identifying the limitations and challenges of AR-based healthcare applications, to support the research and the development of further studies. Methods: Studies published from January 2018 to December 2021 were analyzed after a comprehensive search on PubMed, Google Scholar, Scopus, IEEE Xplore, Science Direct, and Wiley Online Library databases. In order to improve the review reporting, the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used. Results: Authors selected sixty-two articles meeting the inclusion criteria, which were categorized according to the purpose of the study (intraoperative, training, rehabilitation) and according to the surgical procedure used. Conclusions: AR has the potential to improve orthopedic training and practice by providing an increasingly human-centered clinical approach. Further research can be addressed by this review to cover problems related to hardware limitations, lack of accurate registration and tracking systems, and absence of security protocols

    Skills Assessment in Arthroscopic Surgery by Processing Kinematic, Force, and Bio-signal Data

    Get PDF
    Arthroscopic surgery is a type of Minimally Invasive Surgery (MIS) performed in human joints, which can be used for diagnostic or treatment purposes. The nature of this type of surgery makes it such that surgeons require extensive training to become experts at performing surgical tasks in tight environments and with reduced force feedback. MIS increases the possibility of erroneous actions, which could result in injury to the patient. Many of these injuries can be prevented by implementing appropriate training and skills assessment methods. Various performance methods, including Global Rating Scales and technical measures, have been proposed in the literature. However, there is still a need to further improve the accuracy of surgical skills assessment and improve its ability to distinguish fine variations in surgical proficiency. The main goal of this thesis is to enhance surgical, and specifically, arthroscopic skills assessment. The optimal assessment method should be objective, distinguish between subjects with different levels of expertise, and be computationally efficient. This thesis proposes a new method of investigating surgical skills by introducing energy expenditure metrics. To this end, two main approaches are pursued: 1) evaluating the kinematics of instrument motion, and 2) exploring the muscle activity of trainees. Mechanical energy expenditure and work are investigated for a variety of laparoscopic and arthroscopic tasks. The results obtained in this thesis demonstrate that expert surgeons expend less energy than novice trainees. The different forms of mechanical energy expenditure were combined through optimization methods and machine learning algorithms. An optimum two-step optimization method for classifying trainees into detailed levels of expertise is proposed that demonstrates an enhanced ability to determine the level of expertise of trainees compared to other published methods. Furthermore, performance metrics are proposed based on electromyography signals of the forearm muscles, which are recorded using a wearable device. These results also demonstrate that the metrics defined based on muscle activity can be used for arthroscopic skills assessment. The energy-based metrics and the muscle activity metrics demonstrated the ability to identify levels of expertise, with accuracy levels as high as 95% and 100%, respectively. The primary contribution of this thesis is the development of novel metrics and assessment methods based on energy expenditure and muscle activity. The methods presented advance our knowledge of the characteristics of dexterous performance and add another perspective to quantifying surgical proficiency

    HAPPY: Hip Arthroscopy Portal Placement Using Augmented Reality

    Full text link
    Correct positioning of the endoscope is crucial for successful hip arthroscopy. Only with adequate alignment can the anatomical target area be visualized and the procedure be successfully performed. Conventionally, surgeons rely on anatomical landmarks such as bone structure, and on intraoperative X-ray imaging, to correctly place the surgical trocar and insert the endoscope to gain access to the surgical site. One factor complicating the placement is deformable soft tissue, as it can obscure important anatomical landmarks. In addition, the commonly used endoscopes with an angled camera complicate hand-eye coordination and, thus, navigation to the target area. Adjusting for an incorrectly positioned endoscope prolongs surgery time, requires a further incision and increases the radiation exposure as well as the risk of infection. In this work, we propose an augmented reality system to support endoscope placement during arthroscopy. Our method comprises the augmentation of a tracked endoscope with a virtual augmented frustum to indicate the reachable working volume. This is further combined with an in situ visualization of the patient anatomy to improve perception of the target area. For this purpose, we highlight the anatomy that is visible in the endoscopic camera frustum and use an automatic colorization method to improve spatial perception. Our system was implemented and visualized on a head-mounted display. The results of our user study indicate the benefit of the proposed system compared to baseline positioning without additional support, such as an increased alignment speed, improved positioning error and reduced mental effort. The proposed approach might aid in the positioning of an angled endoscope, and may result in better access to the surgical area, reduced surgery time, less patient trauma, and less X-ray exposure during surgery
    • …
    corecore