8 research outputs found

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Ultra Low-power Wireless Sensor Node Design for ECG Sensing Applications

    Full text link
    Ubiquitous computing, such as smart homes, smart cars, and smart grid, connects our world closely so that we can easily access to the world through such virtual infrastructural systems. The ultimate vision of this is Internet of Things (IoT) through which intelligent monitoring and management is feasible via networked sensors and actuators. In this system, devices transmit sensed information, and execute instructions distributed via sensor networks. A wireless sensor network (WSN) is such a network where many sensor nodes are interconnected such that a sensor node can transmit information via its adjacent sensor nodes when physical phenomenon is detected. Accordingly, the information can be delivered to the destination through this process. The concept of WSN is also applicable to biomedical applications, especially ECG sensing applications, in a form of a sensor network, so-called body sensor network (BSN), where affixed or implanted biosignal sensors gather bio-signals and transmit them to medical providers. The main challenge of BSN is energy constraint since implanted sensor nodes cannot be replaced easily, so they should prolong with a limited amount of battery energy or by energy harvesting. Thus, we will discuss several power saving techniques in this thesis.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137081/1/hesed_1.pd

    ULTRA ENERGY-EFFICIENT SUB-/NEAR-THRESHOLD COMPUTING: PLATFORM AND METHODOLOGY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Interconnect and Memory Design for Intelligent Mobile System

    Full text link
    Technology scaling has driven the transistor to a smaller area, higher performance and lower power consuming which leads us into the mobile and edge computing era. However, the benefits of technology scaling are diminishing today, as the wire delay and energy scales far behind that of the logics, which makes communication more expensive than computation. Moreover, emerging data centric algorithms like deep learning have a growing demand on SRAM capacity and bandwidth. High access energy and huge leakage of the large on-chip SRAM have become the main limiter of realizing an energy efficient low power smart sensor platform. This thesis presents several architecture and circuit solutions to enable intelligent mobile systems, including voltage scalable interconnect scheme, Compute-In-Memory (CIM), low power memory system from edge deep learning processor and an ultra-low leakage stacked voltage domain SRAM for low power smart image signal processor (ISP). Four prototypes are implemented for demonstration and verification. The first two seek the solutions to the slow and high energy global on-chip interconnect: the first prototype proposes a reconfigurable self-timed regenerator based global interconnect scheme to achieve higher performance and energy-efficiency in wide voltage range, while the second one presents a non Von Neumann architecture, a hybrid in-/near-memory Compute SRAM (CRAM), to address the locality issue. The next two works focus on low-power low-leakage SRAM design for Intelligent sensors. The third prototype is a low power memory design for a deep learning processor with 270KB custom SRAM and Non-Uniform Memory Access architecture. The fourth prototype is an ultra-low leakage SRAM for motion-triggered low power smart imager sensor system with voltage domain stacking and a novel array swapping mechanism. The work presented in this dissertation exploits various optimizations in both architecture level (exploiting temporal and spatial locality) and circuit customization to overcome the main challenges in making extremely energy-efficient battery-powered intelligent mobile devices. The impact of the work is significant in the era of Internet-of-Things (IoT) and the age of AI when the mobile computing systems get ubiquitous, intelligent and longer battery life, powered by these proposed solutions.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155232/1/jiwang_1.pd

    Design for Reliability and Low Power in Emerging Technologies

    Get PDF
    Die fortlaufende Verkleinerung von Transistor-Strukturgrößen ist einer der wichtigsten Antreiber für das Wachstum in der Halbleitertechnologiebranche. Seit Jahrzehnten erhöhen sich sowohl Integrationsdichte als auch Komplexität von Schaltkreisen und zeigen damit einen fortlaufenden Trend, der sich über alle modernen Fertigungsgrößen erstreckt. Bislang ging das Verkleinern von Transistoren mit einer Verringerung der Versorgungsspannung einher, was zu einer Reduktion der Leistungsaufnahme führte und damit eine gleichbleibenden Leistungsdichte sicherstellte. Doch mit dem Beginn von Strukturgrößen im Nanometerbreich verlangsamte sich die fortlaufende Skalierung. Viele Schwierigkeiten, sowie das Erreichen von physikalischen Grenzen in der Fertigung und Nicht-Idealitäten beim Skalieren der Versorgungsspannung, führten zu einer Zunahme der Leistungsdichte und, damit einhergehend, zu erschwerten Problemen bei der Sicherstellung der Zuverlässigkeit. Dazu zählen, unter anderem, Alterungseffekte in Transistoren sowie übermäßige Hitzeentwicklung, nicht zuletzt durch stärkeres Auftreten von Selbsterhitzungseffekten innerhalb der Transistoren. Damit solche Probleme die Zuverlässigkeit eines Schaltkreises nicht gefährden, werden die internen Signallaufzeiten üblicherweise sehr pessimistisch kalkuliert. Durch den so entstandenen zeitlichen Sicherheitsabstand wird die korrekte Funktionalität des Schaltkreises sichergestellt, allerdings auf Kosten der Performance. Alternativ kann die Zuverlässigkeit des Schaltkreises auch durch andere Techniken erhöht werden, wie zum Beispiel durch Null-Temperatur-Koeffizienten oder Approximate Computing. Wenngleich diese Techniken einen Großteil des üblichen zeitlichen Sicherheitsabstandes einsparen können, bergen sie dennoch weitere Konsequenzen und Kompromisse. Bleibende Herausforderungen bei der Skalierung von CMOS Technologien führen außerdem zu einem verstärkten Fokus auf vielversprechende Zukunftstechnologien. Ein Beispiel dafür ist der Negative Capacitance Field-Effect Transistor (NCFET), der eine beachtenswerte Leistungssteigerung gegenüber herkömmlichen FinFET Transistoren aufweist und diese in Zukunft ersetzen könnte. Des Weiteren setzen Entwickler von Schaltkreisen vermehrt auf komplexe, parallele Strukturen statt auf höhere Taktfrequenzen. Diese komplexen Modelle benötigen moderne Power-Management Techniken in allen Aspekten des Designs. Mit dem Auftreten von neuartigen Transistortechnologien (wie zum Beispiel NCFET) müssen diese Power-Management Techniken neu bewertet werden, da sich Abhängigkeiten und Verhältnismäßigkeiten ändern. Diese Arbeit präsentiert neue Herangehensweisen, sowohl zur Analyse als auch zur Modellierung der Zuverlässigkeit von Schaltkreisen, um zuvor genannte Herausforderungen auf mehreren Designebenen anzugehen. Diese Herangehensweisen unterteilen sich in konventionelle Techniken ((a), (b), (c) und (d)) und unkonventionelle Techniken ((e) und (f)), wie folgt: (a)\textbf{(a)} Analyse von Leistungszunahmen in Zusammenhang mit der Maximierung von Leistungseffizienz beim Betrieb nahe der Transistor Schwellspannung, insbesondere am optimalen Leistungspunkt. Das genaue Ermitteln eines solchen optimalen Leistungspunkts ist eine besondere Herausforderung bei Multicore Designs, da dieser sich mit den jeweiligen Optimierungszielsetzungen und der Arbeitsbelastung verschiebt. (b)\textbf{(b)} Aufzeigen versteckter Interdependenzen zwischen Alterungseffekten bei Transistoren und Schwankungen in der Versorgungsspannung durch „IR-drops“. Eine neuartige Technik wird vorgestellt, die sowohl Über- als auch Unterschätzungen bei der Ermittlung des zeitlichen Sicherheitsabstands vermeidet und folglich den kleinsten, dennoch ausreichenden Sicherheitsabstand ermittelt. (c)\textbf{(c)} Eindämmung von Alterungseffekten bei Transistoren durch „Graceful Approximation“, eine Technik zur Erhöhung der Taktfrequenz bei Bedarf. Der durch Alterungseffekte bedingte zeitlich Sicherheitsabstand wird durch Approximate Computing Techniken ersetzt. Des Weiteren wird Quantisierung verwendet um ausreichend Genauigkeit bei den Berechnungen zu gewährleisten. (d)\textbf{(d)} Eindämmung von temperaturabhängigen Verschlechterungen der Signallaufzeit durch den Betrieb nahe des Null-Temperatur Koeffizienten (N-ZTC). Der Betrieb bei N-ZTC minimiert temperaturbedingte Abweichungen der Performance und der Leistungsaufnahme. Qualitative und quantitative Vergleiche gegenüber dem traditionellen zeitlichen Sicherheitsabstand werden präsentiert. (e)\textbf{(e)} Modellierung von Power-Management Techniken für NCFET-basierte Prozessoren. Die NCFET Technologie hat einzigartige Eigenschaften, durch die herkömmliche Verfahren zur Spannungs- und Frequenzskalierungen zur Laufzeit (DVS/DVFS) suboptimale Ergebnisse erzielen. Dies erfordert NCFET-spezifische Power-Management Techniken, die in dieser Arbeit vorgestellt werden. (f)\textbf{(f)} Vorstellung eines neuartigen heterogenen Multicore Designs in NCFET Technologie. Das Design beinhaltet identische Kerne; Heterogenität entsteht durch die Anwendung der individuellen, optimalen Konfiguration der Kerne. Amdahls Gesetz wird erweitert, um neue system- und anwendungsspezifische Parameter abzudecken und die Vorzüge des neuen Designs aufzuzeigen. Die Auswertungen der vorgestellten Techniken werden mithilfe von Implementierungen und Simulationen auf Schaltkreisebene (gate-level) durchgeführt. Des Weiteren werden Simulatoren auf Systemebene (system-level) verwendet, um Multicore Designs zu implementieren und zu simulieren. Zur Validierung und Bewertung der Effektivität gegenüber dem Stand der Technik werden analytische, gate-level und system-level Simulationen herangezogen, die sowohl synthetische als auch reale Anwendungen betrachten

    Voltage stacking for near/sub-threshold operation

    Get PDF

    An FPGA implementation of an investigative many-core processor, Fynbos : in support of a Fortran autoparallelising software pipeline

    Get PDF
    Includes bibliographical references.In light of the power, memory, ILP, and utilisation walls facing the computing industry, this work examines the hypothetical many-core approach to finding greater compute performance and efficiency. In order to achieve greater efficiency in an environment in which Moore’s law continues but TDP has been capped, a means of deriving performance from dark and dim silicon is needed. The many-core hypothesis is one approach to exploiting these available transistors efficiently. As understood in this work, it involves trading in hardware control complexity for hundreds to thousands of parallel simple processing elements, and operating at a clock speed sufficiently low as to allow the efficiency gains of near threshold voltage operation. Performance is there- fore dependant on exploiting a new degree of fine-grained parallelism such as is currently only found in GPGPUs, but in a manner that is not as restrictive in application domain range. While removing the complex control hardware of traditional CPUs provides space for more arithmetic hardware, a basic level of control is still required. For a number of reasons this work chooses to replace this control largely with static scheduling. This pushes the burden of control primarily to the software and specifically the compiler, rather not to the programmer or to an application specific means of control simplification. An existing legacy tool chain capable of autoparallelising sequential Fortran code to the degree of parallelism necessary for many-core exists. This work implements a many-core architecture to match it. Prototyping the design on an FPGA, it is possible to examine the real world performance of the compiler-architecture system to a greater degree than simulation only would allow. Comparing theoretical peak performance and real performance in a case study application, the system is found to be more efficient than any other reviewed, but to also significantly under perform relative to current competing architectures. This failing is apportioned to taking the need for simple hardware too far, and an inability to implement static scheduling mitigating tactics due to lack of support for such in the compiler
    corecore