759 research outputs found

    Targeted computational analysis of the C3HEB/FEJ mouse model for drug efficacy testing

    Get PDF
    2020 Spring.Includes bibliographical references.Efforts to develop effective and safe drugs for the treatment of tuberculosis (TB) require preclinical evaluation in animal models. Alongside efficacy testing of novel therapies, effects on pulmonary pathology and disease progression are monitored by using histopathology images from these infected animals. To compare the severity of disease across treatment cohorts, pathologists have historically assigned a semi-quantitative histopathology score that may be subjective in terms of their training, experience, and personal bias. Manual histopathology, therefore, has limitations regarding reproducibility between studies and pathologists, potentially masking successful treatments. This report describes a pathologist-assistive software tool that reduces these user limitations while providing a rapid, quantitative scoring system for digital histopathology image analysis. The software, called 'Lesion Image Recognition and Analysis' (LIRA), employs convolutional neural networks to classify seven different pathology features, including three different lesion types from pulmonary tissues of the C3HeB/FeJ tuberculosis mouse model. LIRA was developed to improve the efficiency of histopathology analysis for mouse tuberculosis infection models. The model approach also has broader applications to other diseases and tissues. This also includes animals that are undergoing anti-mycobacterial treatment and host immune system modulation. A complimentary software package called 'Mycobacterial Image Analysis' (MIA) had also been developed that characterizes the varying bacilli characteristics such as density, aggregate/planktonic bacilli size, fluorescent intensity, and total counts. This further groups the bacilli characteristic data depending on the seven different classifications that are selected by the user. Using this approach allows for an even more targeted analysis approach that can determine how therapy and microenvironments influence the Mtb response

    Identification and quantification of the alveolar compartment by confocal laser endomicroscopy in patients with interstitial lung diseases

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Biofísica Médica e Fisiologia de Sistemas), Universidade de Lisboa, Faculdade de Ciências, 2018Doenças Intersticiais Pulmonares (DIP) é um termo que inclui mais de 200 doenças que afectam o parênquima pulmonar, partilhando manifestações clínicas, radiográficas e patológicas semelhantes. Este conjunto de doenças é bastante heterogéneo, apresentando cada tipo de DIP em diferente grau os elementos de inflamação e fibrose: enquanto a inflamação é reflectida pelo aumento de células inflamatórias e presença de nódulos ou edema, a fibrose reflecte-se pelas fibras adicionais de colagénio e elastina. Identificar o tipo de DIP de um doente é um processo difícil, sendo a Discussão Multidisciplinar o actual método de diagnóstico "gold standard": vários médicos especialistas compõem uma equipa multidisciplinar que vai ter em conta os dados clínicos, radiológicos e patológicos disponíveis para chegar a uma conclusão. Estes dados incluem imagens de tomografia computorizada de alta resolução (TCAR), a descrição da lavagem broncoalveolar e, quando possível, dados de biópsias. Apesar do esforço e competência da equipa multidisciplinar, 10% dos pacientes são categorizados como inclassificáveis devido a dados inadequados ou discrepância entre os dados existentes. A maior causa para DIP inclassificáveis é a ausência de dados histopatológicos associada aos riscos das biópsias cirúrgicas. É muito importante determinar a DIP específica de um doente, dadas as suas implicações no tratamento e gestão do mesmo. É particularmente crítica a distinção entre doentes com Fibrose Pulmonar Idiopática (FPI) e doentes sem FPI, dado que há terapias anti-fibróticas – como o Pirfenidone – indicadas para FPI que são extremamente dispendiosas, exigindo certeza no diagnóstico antes de serem prescritas. Além disso, o tratamento com agentes imunossupressores pode funcionar com o grupo dos não-FPI mas aumenta a morte e hospitalizações nos doentes com FPI. A discussão multidisciplinar pode beneficiar da informação adicional oferecida pelo Confocal Laser Endomicroscopy (CLE), uma técnica de imagiologia que torna possível visualizar os alvéolos pulmonares com resolução microscópica de forma minimamente invasiva, através de uma broncoscopia. O laser do CLE tem um comprimento de onda de 488 nm que permite observar a autofluorescência das fibras de elastina. Há evidências de que a quantidade de fibras de elastina é aumentada e a arquitectura destas fibras é alterada na presença de fibrose pulmonar, a qual está associada a algumas doenças intersticiais pulmonares incluindo a fibrose pulmonar idiopática. Até à data, os vídeos de Confocal Laser Endomicroscopy são, na maioria dos casos, analisados apenas visualmente, e pouca informação objectiva e consistente foi conseguida destes vídeos em doentes de DIP. No entanto, é possível obter informação mais relevante dos mesmos, convertendo-os em frames, pré-processando as imagens e extraindo atributos numéricos. Neste projecto, foram obtidas imagens dos alvéolos pulmonares de doentes de DIP através de CLE. O principal objectivo do projecto é melhorar a técnica de CLE e aumentar a sua usabilidade para que no futuro possa contribuir para facilitar a estratificação de doentes com DIP e eventualmente reduzir o número de biópsias pulmonares nestes doentes. Como mencionado, o instrumento de Confocal Laser Endomicroscopy emite uma luz laser azul de 488nm, a qual é reflectida no tecido e reorientada para o sistema de detecção pela mesma lente, passando por um pequeno orifício (pinhole). Isto permite que a luz focada seja recolhida e que feixes provenientes de planos fora de foco sejam excluídos, originando uma resolução microscópica que permite imagens ao nível celular. Quando o CLE é aplicado a imagem pulmonar, é possível observar as paredes alveolares pela autofluorescência natural presente nas fibras de elastina. No estudo clínico subjacente a este estudo, o protocolo de CLE foi aplicado a 20 pacientes, embora 8 tenham sido posteriormente excluídos da análise. Os vídeos de CLE obtidos sofreram duas selecções: uma com base na região onde uma biópsia (usada como referência) foi tirada e outra com base na qualidade técnica das imagens. Depois, os dados foram pré-processados: geraram-se imagens mosaico com um campo de visão alargado e, paralelamente converteram-se as sequências de vídeo em frames. A qualidade da imagem foi melhorada, filtrando o ruído electrónico para que posteriormente pudesse ser aplicada a análise de imagem. Esta análise extraiu valores numéricos que reflectem o estado do espaço alveolar, nomeadamente, variáveis de textura e medições relacionadas com as fibras de elastina. As imagens de CLE obtidas mostraram-se muito interessantes. A resolução é superior à tomografia computorizada de alta resolução e a tridimensionalidade acrescenta informação às biópsias. O facto de permitir feedback em tempo real e observar ao vivo os movimentos naturais da respiração contribui para a análise do estado do doente. A análise de textura feita às imagens serviu-se de um algoritmo de extracção de variáveis de Haralick a partir de uma Gray-Level Co-occurence Matrix (GLCM). Foram extraídas as variáveis de textura Momento Angular Secundário (Energia), Entropia, Momento de Diferença Inversa, Contraste, Variação e Correlação. O algoritmo de Ridge Detection (detecção de linhas) identificou a maior parte das fibras de elastina detectáveis por um observador humano e mediu o Número de Fibras, o seu Comprimento e Largura e o Número de Junções entre fibras, permitindo também calcular a Soma dos Comprimentos de todas as fibras. Estes algoritmos devolveram valores consistentes num processo mais eficiente comparado com um observador humano, conseguindo avaliar em poucos segundos múltiplas variáveis para todo o conjunto de dados. As medições relacionadas com as fibras de elastina pretendiam ajudar a identificar os doentes fibróticos. Era esperado que as fibras dos doentes fibróticos fossem mais largas, mas isso não se observou. Também se previa que este grupo de doentes apresentasse maior número de fibras e junções, mas não houve uma diferença significativa entre grupos. No entanto, quando o grupo fibrótico foi segregado, o número de fibras e junções parece separar a fibrose moderada da fibrose severa. Este resultado é interessante na medida em que sugere que a monitorização do número de fibras/junções com CLE pode potencialmente ser usado como medida de eficácia de medicação anti-fibrótica. Em relação às variáveis de textura, esperava-se que os doentes fibróticos apresentassem valores mais elevados de Entropia, Contraste e Variância e valores inferiores de Momento de Diferença Inversa, dado que o seu tecido pulmonar deveria corresponder a imagens mais complexas e heterogéneas com mais arestas presentes. No entanto, ainda não foi possível estabelecer diferenças significativas entre grupos. Apesar dos resultados com o conjunto de dados usado não ter demonstrado correlações fortes entre as conclusões do CLE e da TCAR/histopatologia, os valores das variáveis em si já contribuem para o estudo das DIP, nomeadamente da sua fisiologia. De facto, a amostra de doentes deste estudo era reduzida, mas com uma amostra maior, espera-se que algumas das varáveis se correlacionem com outras técnicas usadas no diagnóstico e permitam segregar os pacientes em grupos e eventualmente aplicar classificação de dados. Neste momento, é possível especular que algumas variáveis seriam melhores candidatas para um classificador, nomeadamente os Números de Fibras e Junções, a Soma dos Comprimentos das fibras e as variáveis de Haralick Entropia e Energia. O projecto apresentado nesta dissertação foi desenvolvido através de um estágio de 6 meses no departamento de Pneumologia no Academic Medical Center em Amsterdão, Países Baixos. No Academic Medical Center (AMC), fui acompanhada pelos estudantes de doutoramento Lizzy Wijmans - médica - e Paul Brinkman - engenheiro biomédico - e supervisionada pelo Dr. Jouke Annema, MD, PhD, Professor de endoscopia pulmonar. Este grupo de investigação do AMC está focado em técnicas inovadoras de imagiologia do sistema pulmonar e teve a oportunidade de reunir com a empresa MKT –que produz a tecnologia de Confocal Laser Endomicroscopy –, o que enriqueceu a discussão aqui apresentada. Do Departamento de Física da Faculdade de Ciências da Universidade de Lisboa, fui orientada pelo Prof. Nuno Matela.Interstitial Lung Diseases (ILD) is a heterogeneous group of more than 200 diseases which affect the lung parenchyma. To identify the type of ILD a patient suffers from is a difficult process, and 10% of the patients are categorized as unclassifiable, mostly due to the absence of histopathological data associated with the risks of lung biopsies. The patient specific diagnosis is important because of its implications to the patient treatment and management, being particularly relevant to identify lung fibrosis. The Confocal Laser Endomicroscopy (CLE) can add information to this process. CLE allows to image the lung tissue with a micrometer resolution in a minimally invasive way, through a bronchoscopy. The elastin fibers from the lung alveoli are visible with this technique due to their autofluorescence. Since there is evidence that the amount of elastin fibers increases, and their architecture is altered in lung fibrosis, CLE should be used to extract values reflecting this condition. Thus, the main goal of this project was to improve the CLE technique and increase its usability, by extracting numerical values from the images which would reflect the state of the alveolar space, particularly the elastin fibers. The ILD patients recruited for the study had their lung alveoli imaged with CLE. The CLE movies were selected, pre-processed – were converted into frames, had their image quality enhanced and some mosaics were obtained – and then analyzed. The ridge detection algorithm detected most fibers recognized by a human observer. It allowed the measurement of the Number of Detected Fibers, their Length and Width, the Number of Junctions between fibers and to calculate the Sum from all Fibers’ Lengths. The Gray-Level Co-occurrence Matrix allowed the extraction of the Haralick texture features: Angular Second Moment (Energy), Entropy, Inverse Difference Moment, Contrast, Variance and Correlation. These algorithms produced consistent and unbiased numerical features, in an efficient process which can analyze the entire data set in a few seconds. Regarding the fiber related measurements, it was expected for the fibrotic patients to have wider fibers and a higher number of fibers and junctions. In terms of texture variables, it was expected from the fibrotic patients to present higher values of Entropy, Contrast and Variance, and lower values of Inverse Difference Moment, given their lung tissue should correspond to more complex and heterogeneous images with more ridges present. Due to the small sample size, it was still not possible to stratify patients with this data set. Nevertheless, the measurements presented here already contribute to the study of ILD, helping to understand the disease physiology. It is hoped that in the future, these measurements will aid the diagnosis process specially in those cases when patients cannot undergo a surgical biopsy. Additionally, CLE could potentially be used as an anti-fibrotic medication efficiency measurement tool

    Digital Measurement of Myelofibrosis Associated Platelet Derived Growth Factor Receptor Ăź (PDGFR Ăź) Expression in Bone Marrow Biopsies

    Get PDF
    In daily routine the reticulin silver staining is used on bone marrow biopsy samples as a gold standard for the characterization of myelofibrosis, however this method does not provide information about the prefibrotic stage.Recently a specific immunohistochemical method was introduced which may overcome these weaknesses of reticulin staining. Activated fibroblasts responsible for stromal proliferation are highlighted by increased PDGFR β expression, which can be presented by immunohistochemistry in bone marrow samples. Using this staining the pre-fibrotic stage can become detectable and we have information about the disease activity.During development of new staining method it is important to prove its reliability and usability. In this paper we introduce a digital image processing method to measure paranchymal damage in digitalized histological slides that can aid correct interpretation of the staining.</p

    Quantification of liver fibrosis—a comparative study

    Get PDF
    Liver disease has been targeted as the fifth most common cause of death worldwide and tends to steadily rise. In the last three decades, several publications focused on the quantification of liver fibrosis by means of the estimation of the collagen proportional area (CPA) in liver biopsies obtained from digital image analysis (DIA). In this paper, early and recent studies on this topic have been reviewed according to these research aims: the datasets used for the analysis, the employed image processing techniques, the obtained results, and the derived conclusions. The purpose is to identify the major strengths and “gray-areas” in the landscape of this topic

    3D virtual histology of murine kidneys-high resolution visualization of pathological alterations by micro computed tomography

    No full text
    The increasing number of patients with end stage chronic kidney disease not only calls for novel therapeutics but also for pioneering research using convincing preclinical disease models and innovative analytical techniques. The aim of this study was to introduce a virtual histology approach using micro computed tomography (mu CT) for the entire murine kidney in order to close the gap between single slice planar histology and a 3D high resolution dataset. An ex vivo staining protocol based on phosphotungstic acid diffusion was adapted to enhance renal soft tissue x-ray attenuation. Subsequent CT scans allowed (i) the detection of the renal cortex, medulla and pelvis in greater detail, (ii) the analysis of morphological alterations, (iii) the quantification of the volume as well as the radio-opacity of these portions and (iv) the quantification of renal fibrotic remodeling based on altered radio-opacity using the unilateral ureteral obstruction model. Thus, virtual histology based on PTA contrast enhanced CT will in future help to refine the outcome of preclinical research on kidney associated murine disease models
    • …
    corecore