1,475 research outputs found

    Performance Factors in Neurosurgical Simulation and Augmented Reality Image Guidance

    Get PDF
    Virtual reality surgical simulators have seen widespread adoption in an effort to provide safe, cost-effective and realistic practice of surgical skills. However, the majority of these simulators focus on training low-level technical skills, providing only prototypical surgical cases. For many complex procedures, this approach is deficient in representing anatomical variations that present clinically, failing to challenge users’ higher-level cognitive skills important for navigation and targeting. Surgical simulators offer the means to not only simulate any case conceivable, but to test novel approaches and examine factors that influence performance. Unfortunately, there is a void in the literature surrounding these questions. This thesis was motivated by the need to expand the role of surgical simulators to provide users with clinically relevant scenarios and evaluate human performance in relation to image guidance technologies, patient-specific anatomy, and cognitive abilities. To this end, various tools and methodologies were developed to examine cognitive abilities and knowledge, simulate procedures, and guide complex interventions all within a neurosurgical context. The first chapter provides an introduction to the material. The second chapter describes the development and evaluation of a virtual anatomical training and examination tool. The results suggest that learning occurs and that spatial reasoning ability is an important performance predictor, but subordinate to anatomical knowledge. The third chapter outlines development of automation tools to enable efficient simulation studies and data management. In the fourth chapter, subjects perform abstract targeting tasks on ellipsoid targets with and without augmented reality guidance. While the guidance tool improved accuracy, performance with the tool was strongly tied to target depth estimation – an important consideration for implementation and training with similar guidance tools. In the fifth chapter, neurosurgically experienced subjects were recruited to perform simulated ventriculostomies. Results showed anatomical variations influence performance and could impact outcome. Augmented reality guidance showed no marked improvement in performance, but exhibited a mild learning curve, indicating that additional training may be warranted. The final chapter summarizes the work presented. Our results and novel evaluative methodologies lay the groundwork for further investigation into simulators as versatile research tools to explore performance factors in simulated surgical procedures

    Evaluation of an augmented reality application for learning neuroanatomy in psychology

    Get PDF
    Neuroanatomy is difficult for psychology students because of spatial visualization and the relationship among brain structures. Some technologies have been implemented to facilitate the learning of anatomy using three-dimensional (3D) visualization of anatomy contents. Augmented reality (AR) is a promising technology in this field. A mobile AR application to provide the visualization of morphological and functional information of the brain was developed. A sample of 67 students of neuropsychology completed tests for visuospatial ability, anatomical knowledge, learning goals, and experience with technologies. Subsequently, they performed a learning activity using one of the visualization methods considered: a 3D method using the AR application and a two-dimensional (2D) method using a textbook to color, followed by questions concerning their satisfaction and knowledge. After using the alternative method, the students expressed their preference. The two methods improved knowledge equally, but the 3D method obtained higher satisfaction scores and was more preferred by students. The 3D method was also more preferred by the students who used this method during the activity. After controlling for the method used in the activity, associations were found between the preference of the 3D method because of its usability and experience with technologies. These results found that the AR application was highly valued by students to learn and was as effective as the textbook for this purpose

    Teaching Neuroanatomy Virtually: Integrating an Interactive 3D E-Learning Resource for Enhanced Neuroanatomy Education

    Get PDF
    An interactive 3D e-learning module was developed to complement neuroanatomy instruction in both an undergraduate medicine neuroanatomy laboratory course, and an undergraduate systemic human anatomy course. The 3D e-learning resource provided students the opportunity to manipulate a dynamic 3D model to view structures from any desired angle, view deep cortical structures at high magnification, and add interactive structural labels. The study utilized a cross-over design, to separate participants into two groups. Each group completed baseline anatomy knowledge and spatial ability knowledge assessments, followed by access to either the 3D e-learning module or conventional learning resources. Participants completed a post-module anatomy knowledge assessment prior to accessing to the other learning modality. A final post-module knowledge assessment was administered following student exposure to the second learning modality. Students who initially accessed the 3D module scored significantly higher on the post-module knowledge assessment than the students who initially accessed the conventional anatomy resources. Participants who accessed the 3D learning resources following gross anatomy resources, significantly improved on the final post-module knowledge assessment. A negative correlation was observed between spatial ability and change in assessment score following access to the 3D module suggesting that students with low spatial ability experienced a greater positive effect on their learning of neuroanatomy following the use of the 3D learning module than students with higher spatial ability. A novel virtual syncretion assessment was also developed that assessed participants’ ability to place neuroanatomical structures in a partial 3D neuroanatomical model, rather than a conventional nominal response. Participants who initially utilized the 3D e-learning resource performed significantly better on the virtual syncretion assessment than participants who initially utilized the 2D e-learning resource. Participants who accessed the 3D e-learning resource subsequent to the 2D e-learning resource significantly improved their performance on the final virtual syncretion assessment. Results of this study could be used to inform the effective development and implementation of 3D e-learning resources to improve neuroanatomy instruction, particularly for students with low spatial ability

    Creation of Interactive VR Application that Supports Reasoning Skills in Anatomy Education

    Get PDF
    For our creative work thesis, we developed a VR (Virtual Reality) Program that allows a user to view and interact with muscles and nerves of a canine leg that would support students to understand the relationships between nerves and muscles. Using an industry-style pipeline, we developed anatomically accurate models of canine muscles and nerves, which we textured, rigged, and animated for use in an educational virtual reality platform. The end goal of the project is to create and measure the efficacy of a visually dynamic experience for the user, allowing them to generally explore canine limb anatomy, and to specifically visualize deficits in muscle movement, produced by user interaction with the canine nervous system. This tool explores the possibilities of Virtual Reality and seek to improve upon existing methods of higher-level anatomy education. Traditionally, higher level anatomy education is taught through the use of cadaver dissections, two-dimensional anatomical diagrams and didactic lectures. However, these traditional methods of teaching anatomy have many limitations and are not enough to build a visual-spatial understanding of anatomical structures. Virtual reality is a strong tool that allows students to directly manipulate anatomical models and observe movements in a three-dimensional space. While the literature has been filled with VR applications that aim to fill this need, many existing tools offer only a static model for the user to explore by rotation, adding and subtracting layers, and viewing labels to learn about the anatomical structure. We seek to increase the level of dynamic interaction that the user has, by allowing the user’s touch of the models to change the animation and movement of the three-dimensional models in their environment. Our outcome is a VR learning tool that has potential for further exploration in higher level anatomy education. Our creative work employs the methodologies of “art-based research”. Art based research can be defined as the systematic use of the artistic process, the actual making of artistic expressions as a primary way of understanding. The project was created iteratively while working with content experts, specifically anatomy experts from Dept. of Veterinary Sciences at Texas A&M University. Implementing anatomy education using virtual reality and developing a universal pipeline for asset creation allows us the freedom to dynamically build on our application. This means that our tool can accommodate for the addition of new muscle and nerves. By continuing to develop our virtual reality application in future works, we can expand the breadth of knowledge a user can gain from interacting with our application

    Creation of Interactive VR Application that Supports Reasoning Skills in Anatomy Education

    Get PDF
    For our creative work thesis, we developed a VR (Virtual Reality) Program that allows a user to view and interact with muscles and nerves of a canine leg that would support students to understand the relationships between nerves and muscles. Using an industry-style pipeline, we developed anatomically accurate models of canine muscles and nerves, which we textured, rigged, and animated for use in an educational virtual reality platform. The end goal of the project is to create and measure the efficacy of a visually dynamic experience for the user, allowing them to generally explore canine limb anatomy, and to specifically visualize deficits in muscle movement, produced by user interaction with the canine nervous system. This tool explores the possibilities of Virtual Reality and seek to improve upon existing methods of higher-level anatomy education. Traditionally, higher level anatomy education is taught through the use of cadaver dissections, two-dimensional anatomical diagrams and didactic lectures. However, these traditional methods of teaching anatomy have many limitations and are not enough to build a visual-spatial understanding of anatomical structures. Virtual reality is a strong tool that allows students to directly manipulate anatomical models and observe movements in a three-dimensional space. While the literature has been filled with VR applications that aim to fill this need, many existing tools offer only a static model for the user to explore by rotation, adding and subtracting layers, and viewing labels to learn about the anatomical structure. We seek to increase the level of dynamic interaction that the user has, by allowing the user’s touch of the models to change the animation and movement of the three-dimensional models in their environment. Our outcome is a VR learning tool that has potential for further exploration in higher level anatomy education. Our creative work employs the methodologies of “art-based research”. Art based research can be defined as the systematic use of the artistic process, the actual making of artistic expressions as a primary way of understanding. The project was created iteratively while working with content experts, specifically anatomy experts from Dept. of Veterinary Sciences at Texas A&M University. Implementing anatomy education using virtual reality and developing a universal pipeline for asset creation allows us the freedom to dynamically build on our application. This means that our tool can accommodate for the addition of new muscle and nerves. By continuing to develop our virtual reality application in future works, we can expand the breadth of knowledge a user can gain from interacting with our application

    Pengaruh Graphical User Interface untuk Industri Medis: Sebuah Tinjauan Sistematis

    Get PDF
    Human Computer Interaction sangat penting dalam evolusi komputerisasi. Graphical user interface merupakan subset dari HCI yang berupa interaksi antara manusia dengan mesin melalui user interface berbasis grafis. GUI digunakan oleh berbagai bidang teknik, elektronik, ekonomi bahkan kedokteran. Perkembangan perangkat keras grafis memicu berbagai bidang untuk memvisualisasikan berbagai model dalam rangka peningkatan pengetahuan. Tinjauan Sistematik ini bertujuan memberikan informasi yang jelas tentang pengaruh graphical user interface terhadap bidang medis baik untuk prediksi penyakit, pengobatan serta medical record dari pasien melalui bukti penelitian yang telah dilakukan serta pengembangan framework khusus untuk penelitian bidang medis.Penelitian dilakukan melaluipencarian pada digital libraray online, IEEExplorer dan ScienceDirect, dibulan Desember 2014 dengan sitasi dari 2008 danabstrak menggunakan bahasa inggris, memanfaatkan parameter AND atau OR. Literatur yang ditemukan akan dieliminasi berdasarkan publication title, relevansi topik, abstak serta hasil penelitian.Ditemukan 347027 literatur kemudian 346923 dieliminasi berdasarkan judul dan abstract. Diperolah 104 artikel lengkap yang kemudian 91 dieliminasi berdasarkan penyaringan judul, abstrak dan hasil penelitian dari literatur tersebut. Sehingga diperoleh 13 literaturlengkap yang digunakan sebagai primary studi. Penelitianakan dibagi menjadi tiga kategori (1) GUI untuk simulator, (2) GUI untuk memprediksi analisis penyakit, dan (3) perkembangan framework GUI yang baru khusus bidang medis. Berdasarkan analisa 69.2% penelitian yang dilakukan untuk memanfaatkan teknologi open-source dan cross-platform dan 61.2% penelitian dibidang visualisasi 3D. Graphical user interface memiliki pengaruh yang sangat besar dibidang medis, pemodelan visualisasi 3D dapat memudahkan pemahaman tentang model anatomi manusia, pemanfaatan teknologi cross-platform dan open-source belum secara signifikan menjadi prioritas dari peneliti dibidang medis

    Understanding neuroanatomy in a virtual 3D environment: creation and use of a new survey tool to evaluate the effectiveness of 3D software in neuroanatomy education for understanding superficial and deep brain structures.

    Get PDF
    Studying cross-sections is a critical approach to learning and testing knowledge in neuroanatomy and the role of 3D technologies have been gradually increasing in medical education, especially after the COVID-19 pandemic. A study was conducted in a quasi-experimental one-group pre-post interventional design in an online setting by creating and evaluating the effectiveness of a virtual lab in neuroanatomy for all neuroscience students enrolled in the Fundamentals of Neuroscience course in our department at the University of Louisville. Study modules were created using the 2D resources used in previous years and 3D web applications of Visible Body and AnatomyLearning.com software. A newly developed 13-item Reaction-Relevance-Result survey measured the effectiveness of these resources, along with Confidence in topics surveys and test results. Results of the study confirmed the advantages of using 3D software for neuroanatomy, with mostly large effect sizes for the pre-post effects. The study also sheds some light on the social need and justice regarding the utility of 3D intervention to bring equitable learning among all genders and academic levels without any effects of earlier performances. The study also uncovered some bias in student perception of the advantages of 3D software for students with any previous neuroanatomy experience. 3D software increased understanding of superficial and deep structures but was more beneficial for deeper structures, thus bridging the difficulty gap between superficial and deep structures, male students being more successful in narrowing this difficulty gap

    Assessment of a novel computer aided learning tool in neuroanatomy education

    Get PDF
    Impaired understanding of intricate neuroanatomical concepts and structural inter-relationships has been associated with a fear of managing neurology patients, called neurophobia, among medical trainees. As technology advances, the role of e-learning pedagogies becomes more important to supplement the traditional dissection / prosection and lecture-based pedagogies for teaching neuroanatomy to undergraduate students. However, despite the availability of a myriad of e-learning resources, the neuro (-anatomy-) phobia – neurophobia nexus prevails. The focus of the PhD was to investigate the difficulties associated with learning neuroanatomy and to develop and assess the efficacy of a novel e-learning tool for teaching neuroanatomy, in the context of the strengths and pitfalls of the currently available e-learning resources. Firstly, we sought to provide direct evidence of the medical and health science students’ perception regarding specific challenges associated with learning neuroanatomy. The initial results showed that neuroanatomy is perceived as a more difficult subject compared to other anatomy topics, with spinal pathways being the most challenging to learn. Participants believed that computer assisted learning and online resources could enhance neuroanatomy understanding and decrease their neurophobia. Next, in the context of the significance of e-learning for supplementing traditional pedagogies, we identified features of neuroanatomy web-resources that were valued by students and educators with regards to learning neuroanatomy of the spinal pathways. Participants identified strengths and weaknesses of existing neuroanatomy web-resources and ranked one resource above the others in terms of information delivery and integration of clinical, physiological and medical imaging correlates. This provides a novel user perspective on the influence of specific elements of neuroanatomy web-resources to improve instructional design and enhance learner performance. Finally, considering the data acquired from students and educators, a novel, interactive, neuroanatomy learning e-resource was developed to support teaching of the neuroanatomy of the spinal pathways. The instructional design included a discussion of the clinical interpretation of basic neuroanatomical facts to aid in neurological localization. The e-learning tool was assessed and evaluated by undergraduate medical and neuroscience students using neuroanatomy knowledge quizzes and Likert-scale perception questionnaires and compared to the previously identified best-ranked neuroanatomy e-resource. Participants’ opinion regarding the usefulness of various components of the tools was also gauged. The results showed that usage of the UCC e-resource led to a significant increase in participants’ knowledge of the neuroanatomy of the spinal pathways compared to students’ who did not use e-resources. Moreover, the participants reported a greater interest in learning neuroanatomy with the novel tool, showing a greater appreciation for it while learning clinical neurological correlates compared to those using the best available e-resource identified earlier. In summary, the prevailing problem of neurophobia could be addressed by enhancing student-interest. Technological e-learning pedagogies, with intelligently designed interactive user-interface and clinical correlation of basic neuroanatomical facts can play a pivotal role in helping students learn neuroanatomy and breaking the nexus between neuro (-anatomy-) phobia and neurophobia
    • …
    corecore