224 research outputs found

    CPA\u27s guide to wireless technology and networking

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1303/thumbnail.jp

    3G migration in Pakistan

    Get PDF
    The telecommunication industry in Pakistan has come a long way since the country\u27s independence in 1947. The initial era could be fairly termed as the PTCL (Pakistan Telecommunication Company Limited) monopoly, for it was the sole provider of all telecommunication services across the country. It was not until four decades later that the region embarked into the new world of wireless communication, hence ending the decades old PTCL monopoly. By the end of the late 1990\u27s, government support and international investment in the region opened new doors to innovation and better quality, low cost, healthy competition. Wireless licenses for the private sector in the telecommunication industry triggered a promising chain of events that resulted in a drastic change in the telecommunication infrastructure and service profile. The newly introduced wireless (GSM) technology received enormous support from all stakeholders (consumers, regulatory body, and market) and caused a vital boost in Pakistan\u27s economy. Numerous tangential elements had triggered this vital move in the history of telecommunications in Pakistan. Entrepreneurs intended to test the idea of global joint ventures in the East and hence the idea of international business became a reality. The technology had proven to be a great success in the West, while Pakistan\u27s telecom consumer had lived under the shadow of PTCL dominance for decades and needed more flexibility. At last the world was moving from wired to wireless! Analysts termed this move as the beginning of a new era. The investors, telecommunication businesses, and Pakistani treasury prospered. It was a win-win situation for all involved. The learning curve was steep for both operators and consumers but certainly improved over time. In essence, the principle of deploying the right technology in the right market at the right time led to this remarkable success. The industry today stands on the brink of a similar crossroads via transition from second generation to something beyond. With the partial success of 3G in Europe and the USA, the government has announced the release of three 3G licenses by mid 2009. This decision is not yet fully supported by all but still initiated parallel efforts by the operators and the vendors to integrate this next move into their existing infrastructure

    Software defined radio : a system engineering view of platform architecture and market diffusion

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design & Management Program, 2002.Includes bibliographical references (p. 179-181).As complexity and ambiguity in products and customer needs increase, existing companies are being forced toward new organizational models. New products require integrating knowledge across technologies, architectures, and functions in new ways, building product platforms that can adapt to changes in markets and product design throughout the product development process. In particular, the wireless telecommunications industry is plagued by multiple incompatible dominant second-generation standards, with each with separate migration paths to future third generation functionality. The high initial investments in spectrum and infrastructure, and corresponding switching costs, call out for a technological solution that can both evolve with the rapid advances in technology and potentially operates seamlessly across multiple incompatible networks to unify a highly fragmented system. In a system engineering context, this thesis investigates the use of software define radio technology (SDR) as a potential replacement for hardware solutions to the multiple air interface standard problem. This thesis investigates the role of product platform architectures in product market diffusion by studying the selection of appropriate system and product architectures, product market diffusion, and the formation of a system dominant design. Using software defined radio (SDR) technology in the wireless telecommunications industry as a case study, the emergence of SDR as a potential replacement for multiple mobile phone standards is investigated. Compared with interim compatibility solutions that combine multiple air interfaces through hardware. SDRs are an emerging technology that promises to combine multiple air-interfaces into a single wireless phone platform though software configuration. Market and organizational disruptions are determined, and how platform architecture concepts can be used to mitigate these disruptions. The history of the wireless telecommunications industry is presented to highlight the determinants of product and standards success in the wireless industry. The transition between first-generation (1G) wireless, second-generation (2G) wireless, and the interim high data rate second-generation (2.5 G) system currently being rolled out is discussed. Geographical differences in standards acceptance and the role of government policies are discussed. The strong network effects in the industry are illustrated by the late success of GSM technology in the United States market. The mode of technological standard interaction or competition is determined through the use of the Lotka-Volterra model of technological interaction and lessons learned applied to third generation systems. Plans for third generation (3G) wireless are presented, and the various transition paths from 2G to 3G are discussed. The challenges of transitioning between technologies (technological discontinuities) are highlighted through a discussion of the installed base of legacy equipment. Software defined radio (SDR) technology is presented, and a platform architecture is developed in the context of 3G market penetration. The use of appropriate flexible SDR system architectures in light of rapidly changing technological and market innovations is discussed.by Moise N. Solomon.S.M

    Femtocell deployment; next generation in cellular systems

    Get PDF
    The final Bachelor’s Thesis that is shown below has such a final purpose of giving an overview of the inclusion of the so-called Femtocells (or Home Node B) in the current cellular systems. The main objective is to give a clear but simple idea about the concepts of Femtocells, as well as to explain the benefits and disadvantages of the mass uses of these services both for consumers and associated companies with this phenomenon. In this text it is also possible to find a brief review of wireless technologies throughout the history of telecommunications, as well as an introduction to the more current wireless technologies, with a special interest in the concept of cellular systems. In the last chapter a simple mathematical explanation of the key issue of interference between Femtocells and macrocellular networks is presented, with a brief argument about possible solutions

    Efficient Handoff for QoS Enhancement in Heterogeneous Wireless Networks (UMTS/WLAN Interworking)

    Get PDF
    Today’s Wireless Communications technologies prove us that wireless communications will in the long run be composed of different communication networks as a way to benefit from each other. This can however be achieved from cellular networks and wireless local area networks that show some compatible characteristics that enable them be integrated. Scenarios typically behind these integrations is the UMTS and WLAN interworking where UMTS network is known for its wide area of coverage and nearly roaming however, known for lack of enough data rate. This is contrary with WLAN which is known for high data rate and cheaper compared to UMTS. WLAN however has a small area of coverage and lacks roaming. This in regard brings the idea that the two different networks being integrated could provide the means for mobile users to be gratified with a supported coverage and quality at anywhere and anytime with seamless access to internet

    Resource allocation for multimedia messaging services over EGPRS

    Get PDF
    The General Packet Radio Service (GPRS) is a new bearer service for GSM that greatly simplifies wireless access to packet data networks, such as the Internet, corporate LANs or to mobile portals. It applies a packet radio standard to transfer user data packets in wellorganized way between Mobile Stations (MS) and external packet data networks. The Enhanced General Packet Radio Service (EGPRS) is an extension of GPRS, offering much greater capacity. These enhancements have allowed the introduction of new services like Multimedia Messaging Services (MMS). MMS enables messaging with full content versatility, including images, audio, video, data and text, from terminal to terminal or from terminal to e-mail. The Wireless Application Protocol (WAP) is the WAP Forum standard for the presentation and delivery of wireless information and telephony services on mobile phones and other wireless terminals. In this thesis it is indicated that efficient radio resource allocation is necessary for managing different types of traffic in order to maintain the quality demands for different types of services. A theoretical model of MMS and WAP traffic is developed, and based on this model a simulator is implemented in Java programming language. This thesis proposes two techniques to improve the radio resource allocation algorithm performance called "radio link condition diversification" and "interactive traffic class prioritization". The radio link condition diversification technique defines minimum radio link quality that allows the user to receive their packets. The interactive traffic class prioritization technique defines different priorities for WAP packets and for MMS packets. Both techniques give good results in increasing user's perception of services and increasing network efficiency. This thesis indicates also that the prioritization mechanism successfully improves the response time of the interactive service by up to 80% with a setting of priority for interactive traffic class and decreasing the performance of the background traffic. This decrease is within a range acceptable by the end-user and that the link conditions limit mechanism has an advantage in terms of resource utilization

    Adaptive Network Based Fuzzy Inference System Model For Minimizing Handover Failure in Mobile Networks

    Get PDF
    For seamless connection between mobile users on the same and different mobile technologies there is need for the deployment of a more complex algorithm for a successful switching of mobile users. Signal to interference ratio, speed of the mobile users and traffic distance are the three input used in the Adaptive network based Fuzzy inference system (ANFIS) which is an hybrid of two techniques of artificial intelligence which make it suitable to handle complexities such as ping-pong effect and interference which impair on the quality of service (QoS) during call handover process as the mobile users move from one coverage area (cell) to anothe

    A novel non-intrusive objective method to predict voice quality of service in LTE networks.

    Get PDF
    This research aimed to introduce a novel approach for non-intrusive objective measurement of voice Quality of Service (QoS) in LTE networks. While achieving this aim, the thesis established a thorough knowledge of how voice traffic is handled in LTE networks, the LTE network architecture and its similarities and differences to its predecessors and traditional ground IP networks and most importantly those QoS affecting parameters which are exclusive to LTE environments. Mean Opinion Score (MOS) is the scoring system used to measure the QoS of voice traffic which can be measured subjectively (as originally intended). Subjective QoS measurement methods are costly and time-consuming, therefore, objective methods such as Perceptual Evaluation of Speech Quality (PESQ) were developed to address these limitations. These objective methods have a high correlation with subjective MOS scores. However, they either require individual calculation of many network parameters or have an intrusive nature that requires access to both the reference signal and the degraded signal for comparison by software. Therefore, the current objective methods are not suitable for application in real-time measurement and prediction scenarios. A major contribution of the research was identifying LTE-specific QoS affecting parameters. There is no previous work that combines these parameters to assess their impacts on QoS. The experiment was configured in a hardware in the loop environment. This configuration could serve as a platform for future research which requires simulation of voice traffic in LTE environments. The key contribution of this research is a novel non-intrusive objective method for QoS measurement and prediction using neural networks. A comparative analysis is presented that examines the performance of four neural network algorithms for non-intrusive measurement and prediction of voice quality over LTE networks. In conclusion, the Bayesian Regularization algorithm with 4 neurons in the hidden layer and sigmoid symmetric transfer function was identified as the best solution with a Mean Square Error (MSE) rate of 0.001 and regression value of 0.998 measured for the testing data set
    corecore