39,274 research outputs found

    Design and Implementation of a Modular Human-Robot Interaction Framework

    Get PDF
    With the increasing longevity that accompanies advances in medical technology comes a host of other age-related disabilities. Among these are neuro-degenerative diseases such as Alzheimer\u27s disease, Parkinson\u27s disease, and stroke, which significantly reduce the motor and cognitive ability of affected individuals. As these diseases become more prevalent, there is a need for further research and innovation in the field of motor rehabilitation therapy to accommodate these individuals in a cost-effective manner. In recent years, the implementation of social agents has been proposed to alleviate the burden on in-home human caregivers. Socially assistive robotics (SAR) is a new subfield of research derived from human-robot interaction that aims to provide hands-off interventions for patients with an emphasis on social rather than physical interaction. As these SAR systems are very new within the medical field, there is no standardized approach to developing such systems for different populations and therapeutic outcomes. The primary aim of this project is to provide a standardized method for developing such systems by introducing a modular human-robot interaction software framework upon which future implementations can be built. The framework is modular in nature, allowing for a variety of hardware and software additions and modifications, and is designed to provide a task-oriented training structure with augmented feedback given to the user in a closed-loop format. The framework utilizes the ROS (Robot Operating System) middleware suite which supports multiple hardware interfaces and runs primarily on Linux operating systems. These design requirements are validated through testing and analysis of two unique implementations of the framework: a keyboard input reaction task and a reaching-to-grasp task. These implementations serve as example use cases for the framework and provide a template for future designs. This framework will provide a means to streamline the development of future SAR systems for research and rehabilitation therapy

    A software framework for the implementation of dynamic neural field control architectures for human-robot interaction

    Get PDF
    Useful and efficient human-robot interaction in joint tasks requires the design of a cognitive control architecture that endows robots with crucial cognitive and social capabilities such as intention recognition and complementary action selection. Herein, we present a software framework that eases the design and implementation of Dynamic Neural Field (DNF) cognitive architectures for human-robot joint tasks. We provide a graphical user interface to draw instances of the robot's control architecture. In addition, it allows to simulate, inspect and parametrize them in real-time. The framework eases parameter tuning by allowing changes on-the-fly and by connecting the cognitive architecture with simulated or real robots. Using the case study of an anthropomorphic robot providing assistance to a disabled person during a meal scenario, we illustrate the applicability of the framework.The work was funded by Project NETT: Neural Engineering Transformative Technologies, EU-FP7 ITN (nr.289146), and by FCT - Fundação para a CiĂȘncia e Tecnologia, through the Phd and Posdoc Grants (SFRH/BD/81334/2011 and SFRH/BPD/71874/2010 respectively, ïŹnanced by POPH-QREN-Type 4.1- Advanced Training, co-funded by the European Social Fund and national funds from MEC), and Project Scope: UID/CEC/00319/2013 together with COMPETE: POCI-01-0145-FEDER007043.info:eu-repo/semantics/publishedVersio

    Design Research on Robotic Products for School Environments

    Get PDF
    Advancements in robotic research have led to the design of a number of robotic products that can interact with people. In this research, a school environment was selected for a practical test of robotic products. For this, the robot “Tiro” was built, with the aim of supporting the learning activities of children. The possibility of applying robotic products was then tested through example lessons using Tiro. To do this, the robot design process and user-centred HRI evaluation framework were studied, and observations of robotic products were made via a field study on the basis of these understandings. Three different field studies were conducted, and interactions between children and robotic products were investigated. As a result, it was possible to understand how emotional interaction and verbal interaction affect the development of social relationships. Early results regarding this and coding schemes for video protocol analysis were gained. In this preliminary study, the findings are summarized and several design implications from insight grouping are suggested. These will help robot designers grasp how various factors of robotic products may be adopted in the everyday lives of people. Keywords: Robotic Products Design, HRI Evaluation, User-Centered HRI.</p

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-BotÂź3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe
    • 

    corecore