278 research outputs found

    Improved Decoding of Staircase Codes: The Soft-aided Bit-marking (SABM) Algorithm

    Get PDF
    Staircase codes (SCCs) are typically decoded using iterative bounded-distance decoding (BDD) and hard decisions. In this paper, a novel decoding algorithm is proposed, which partially uses soft information from the channel. The proposed algorithm is based on marking certain number of highly reliable and highly unreliable bits. These marked bits are used to improve the miscorrection-detection capability of the SCC decoder and the error-correcting capability of BDD. For SCCs with 22-error-correcting Bose-Chaudhuri-Hocquenghem component codes, our algorithm improves upon standard SCC decoding by up to 0.300.30~dB at a bit-error rate (BER) of 10−710^{-7}. The proposed algorithm is shown to achieve almost half of the gain achievable by an idealized decoder with this structure. A complexity analysis based on the number of additional calls to the component BDD decoder shows that the relative complexity increase is only around 4%4\% at a BER of 10−410^{-4}. This additional complexity is shown to decrease as the channel quality improves. Our algorithm is also extended (with minor modifications) to product codes. The simulation results show that in this case, the algorithm offers gains of up to 0.440.44~dB at a BER of 10−810^{-8}.Comment: 10 pages, 12 figure

    The Error-Pattern-Correcting Turbo Equalizer

    Full text link
    The error-pattern correcting code (EPCC) is incorporated in the design of a turbo equalizer (TE) with aim to correct dominant error events of the inter-symbol interference (ISI) channel at the output of its matching Viterbi detector. By targeting the low Hamming-weight interleaved errors of the outer convolutional code, which are responsible for low Euclidean-weight errors in the Viterbi trellis, the turbo equalizer with an error-pattern correcting code (TE-EPCC) exhibits a much lower bit-error rate (BER) floor compared to the conventional non-precoded TE, especially for high rate applications. A maximum-likelihood upper bound is developed on the BER floor of the TE-EPCC for a generalized two-tap ISI channel, in order to study TE-EPCC's signal-to-noise ratio (SNR) gain for various channel conditions and design parameters. In addition, the SNR gain of the TE-EPCC relative to an existing precoded TE is compared to demonstrate the present TE's superiority for short interleaver lengths and high coding rates.Comment: This work has been submitted to the special issue of the IEEE Transactions on Information Theory titled: "Facets of Coding Theory: from Algorithms to Networks". This work was supported in part by the NSF Theoretical Foundation Grant 0728676

    Error-correction coding for high-density magnetic recording channels.

    Get PDF
    Finally, a promising algorithm which combines RS decoding algorithm with LDPC decoding algorithm together is investigated, and a reduced-complexity modification has been proposed, which not only improves the decoding performance largely, but also guarantees a good performance in high signal-to-noise ratio (SNR), in which area an error floor is experienced by LDPC codes.The soft-decision RS decoding algorithms and their performance on magnetic recording channels have been researched, and the algorithm implementation and hardware architecture issues have been discussed. Several novel variations of KV algorithm such as soft Chase algorithm, re-encoded Chase algorithm and forward recursive algorithm have been proposed. And the performance of nested codes using RS and LDPC codes as component codes have been investigated for bursty noise magnetic recording channels.Future high density magnetic recoding channels (MRCs) are subject to more noise contamination and intersymbol interference, which make the error-correction codes (ECCs) become more important. Recent research of replacement of current Reed-Solomon (RS)-coded ECC systems with low-density parity-check (LDPC)-coded ECC systems obtains a lot of research attention due to the large decoding gain for LDPC-coded systems with random noise. In this dissertation, systems aim to maintain the RS-coded system using recent proposed soft-decision RS decoding techniques are investigated and the improved performance is presented

    Reliability Level List Based Iterative SISO Decoding Algorithm for Block Turbo Codes

    Get PDF
    An iterative Reliability Level List (RLL) based soft-input soft-output (SISO) decoding algorithm has been proposed for Block Turbo Codes (BTCs). The algorithm ingeniously adapts the RLL based decoding algorithm for the constituent block codes, which is a soft-input hard-output algorithm. The extrinsic information is calculated using the reliability of these hard-output decisions and is passed as soft-input to the iterative turbo decoding process. RLL based decoding of constituent codes estimate the optimal transmitted codeword through a directed minimal search. The proposed RLL based decoder for the constituent code replaces the Chase-2 based constituent decoder in the conventional SISO scheme. Simulation results show that the proposed algorithm has a clear advantage of performance improvement over conventional Chase-2 based SISO decoding scheme with reduced decoding latency at lower noise levels

    Architectures for soft-decision decoding of non-binary codes

    Full text link
    En esta tesis se estudia el dise¿no de decodificadores no-binarios para la correcci'on de errores en sistemas de comunicaci'on modernos de alta velocidad. El objetivo es proponer soluciones de baja complejidad para los algoritmos de decodificaci'on basados en los c'odigos de comprobaci'on de paridad de baja densidad no-binarios (NB-LDPC) y en los c'odigos Reed-Solomon, con la finalidad de implementar arquitecturas hardware eficientes. En la primera parte de la tesis se analizan los cuellos de botella existentes en los algoritmos y en las arquitecturas de decodificadores NB-LDPC y se proponen soluciones de baja complejidad y de alta velocidad basadas en el volteo de s'¿mbolos. En primer lugar, se estudian las soluciones basadas en actualizaci'on por inundaci 'on con el objetivo de obtener la mayor velocidad posible sin tener en cuenta la ganancia de codificaci'on. Se proponen dos decodificadores diferentes basados en clipping y t'ecnicas de bloqueo, sin embargo, la frecuencia m'axima est'a limitada debido a un exceso de cableado. Por este motivo, se exploran algunos m'etodos para reducir los problemas de rutado en c'odigos NB-LDPC. Como soluci'on se propone una arquitectura basada en difusi'on parcial para algoritmos de volteo de s'¿mbolos que mitiga la congesti'on por rutado. Como las soluciones de actualizaci 'on por inundaci'on de mayor velocidad son sub-'optimas desde el punto de vista de capacidad de correci'on, decidimos dise¿nar soluciones para la actualizaci'on serie, con el objetivo de alcanzar una mayor velocidad manteniendo la ganancia de codificaci'on de los algoritmos originales de volteo de s'¿mbolo. Se presentan dos algoritmos y arquitecturas de actualizaci'on serie, reduciendo el 'area y aumentando de la velocidad m'axima alcanzable. Por 'ultimo, se generalizan los algoritmos de volteo de s'¿mbolo y se muestra como algunos casos particulares puede lograr una ganancia de codificaci'on cercana a los algoritmos Min-sum y Min-max con una menor complejidad. Tambi'en se propone una arquitectura eficiente, que muestra que el 'area se reduce a la mitad en comparaci'on con una soluci'on de mapeo directo. En la segunda parte de la tesis, se comparan algoritmos de decodificaci'on Reed- Solomon basados en decisi'on blanda, concluyendo que el algoritmo de baja complejidad Chase (LCC) es la soluci'on m'as eficiente si la alta velocidad es el objetivo principal. Sin embargo, los esquemas LCC se basan en la interpolaci'on, que introduce algunas limitaciones hardware debido a su complejidad. Con el fin de reducir la complejidad sin modificar la capacidad de correcci'on, se propone un esquema de decisi'on blanda para LCC basado en algoritmos de decisi'on dura. Por 'ultimo se dise¿na una arquitectura eficiente para este nuevo esquemaGarcía Herrero, FM. (2013). Architectures for soft-decision decoding of non-binary codes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/33753TESISPremiad

    Compressed Shaping: Concept and FPGA Demonstration

    Full text link
    Probabilistic shaping (PS) has been widely studied and applied to optical fiber communications. The encoder of PS expends the number of bit slots and controls the probability distribution of channel input symbols. Not only studies focused on PS but also most works on optical fiber communications have assumed source uniformity (i.e. equal probability of marks and spaces) so far. On the other hand, the source information is in general nonuniform, unless bit-scrambling or other source coding techniques to balance the bit probability is performed. Interestingly, one can exploit the source nonuniformity to reduce the entropy of the channel input symbols with the PS encoder, which leads to smaller required signal-to-noise ratio at a given input logic rate. This benefit is equivalent to a combination of data compression and PS, and thus we call this technique compressed shaping. In this work, we explain its theoretical background in detail, and verify the concept by both numerical simulation and a field programmable gate array (FPGA) implementation of such a system. In particular, we find that compressed shaping can reduce power consumption in forward error correction decoding by up to 90% in nonuniform source cases. The additional hardware resources required for compressed shaping are not significant compared with forward error correction coding, and an error insertion test is successfully demonstrated with the FPGA.Comment: 10 pages, 12 figure

    Successive Cancellation Ordered Search Decoding of Modified GN\boldsymbol{G}_N-Coset Codes

    Full text link
    A tree search algorithm called successive cancellation ordered search (SCOS) is proposed for GN\boldsymbol{G}_N-coset codes that implements maximum-likelihood (ML) decoding with an adaptive complexity for transmission over binary-input AWGN channels. Unlike bit-flip decoders, no outer code is needed to terminate decoding; therefore, SCOS also applies to GN\boldsymbol{G}_N-coset codes modified with dynamic frozen bits. The average complexity is close to that of successive cancellation (SC) decoding at practical frame error rates (FERs) for codes with wide ranges of rate and lengths up to 512512 bits, which perform within 0.250.25 dB or less from the random coding union bound and outperform Reed--Muller codes under ML decoding by up to 0.50.5 dB. Simulations illustrate simultaneous gains for SCOS over SC-Fano, SC stack (SCS) and SC list (SCL) decoding in FER and the average complexity at various SNR regimes. SCOS is further extended by forcing it to look for candidates satisfying a threshold on the likelihood, thereby outperforming basic SCOS under complexity constraints. The modified SCOS enables strong error-detection capability without the need for an outer code. In particular, the (128,64)(128, 64) PAC code under modified SCOS provides gains in overall and undetected FER compared to CRC-aided polar codes under SCL/dynamic SC flip decoding at high SNR.Comment: 14 pages, 9 figures, 3 tables. Submitted to IEEE journal. The revised version of the first submission. Major changes: 1) No dedicated section for numerical results. Instead, simulations are provided right after the relevant section. 2) More simulation results are added to compare all the state of art polar decoders in terms of the number of arithmetic operations. arXiv admin note: text overlap with arXiv:2105.0404
    • …
    corecore