634 research outputs found

    Protocol for fabricating electroless nickel immersion gold strain sensors on nitrile butadiene rubber gloves for wearable electronics

    Get PDF
    This protocol describes the fabrication of patterned conductive gold films on nitrile butadiene rubber (NBR) gloves for wearable strain sensors using electroless nickel immersion gold (ENIG) plating, a solution-based metallization technique. The resulting NBR/ENIG films are strain sensitive; resistance measurements of a patterned sensing array can be used to map human hand motions. This protocol also describes challenges related to the ENIG process and troubleshooting steps to achieve conformal gold films for strain sensing over a large working range. For complete details on the use and execution of this protocol, please refer to Mechael et al. (2021)

    Ready-to-wear strain sensing gloves for human motion sensing

    Get PDF
    Integrating soft sensors with wearable platforms is critical for sensor-based human augmentation, yet the fabrication of wearable sensors integrated into ready-to-wear platforms remains underdeveloped. Disposable gloves are an ideal substrate for wearable sensors that map hand-specific gestures. Here, we use solution-based metallization to prepare resistive sensing arrays directly on off-the-shelf nitrile butadiene rubber (NBR) gloves. The NBR glove acts as the wearable platform while its surface roughness enhances the sensitivity of the overlying sensing array. The NBR sensors have a sheet resistance of 3.1 ± 0.6 Ω/sq and a large linear working range (two linear regions ≤70%). When stretched, the rough NBR substrate facilitates microcrack formation in the overlying metal, enabling high gauge factors (62 up to 40% strain, 246 from 45 - 70% strain) that are unprecedented for metal film sensors. We apply the sensing array to dynamically monitor gestures for gesture differentiation and robotic control

    SENSING MECHANISM AND APPLICATION OF MECHANICAL STRAIN SENSOR: A MINI-REVIEW

    Get PDF
    This study reviews the potential of flexible strain sensors based on nanomaterials such as carbon nanotubes (CNTs), graphene, and metal nanowires (NWs). These nanomaterials have excellent flexibility, conductivity, and mechanical properties, which enable them to be integrated into clothing or attached to the skin for the real-time monitoring of various activities. However, the main challenge is balancing high stretchability and sensitivity. This paper explains the basic concept of strain sensors that can convert mechanical deformation into electrical signals. Moreover, this paper focuses on simple, flexible, and stretchable resistive and capacitive sensors. It also discusses the important factors in choosing materials and fabrication methods, emphasizing the crucial role of suitable polymers in high-performance strain sensing. This study reviews the fabrication processes, mechanisms, performance, and applications of stretchable strain sensors in detail. It analyzes key aspects, such as sensitivity, stretchability, linearity, response time, and durability. This review provides useful insights into the current status and prospects of stretchable strain sensors in wearable technology and human–machine interfaces

    Electrospun Bundled Carbon Nanofibers for Skin-Inspired Tactile Sensing, Proprioception and Gesture Tracking Applications

    Get PDF
    Abstract In this work, we report a class of wearable, stitchable, and sensitive carbon nanofiber (CNF)-polydimethylsiloxane (PDMS) composite-based piezoresistive sensors realized by carbonizing electrospun polyacrylonitrile (PAN) nanofibers and subsequently embedding in PDMS elastomeric thin films. Electro-mechanical tactile sensing characterization of the resulting piezoresistive strain sensors revealed a linear response with an average force sensitivity of ~1.82 kN−1 for normal forces up to 20 N. The real-time functionality of the CNF-PDMS composite sensors in wearable body sensor networks and advanced bionic skin applications was demonstrated through human motion and gesture monitoring experiments. A skin-inspired artificial soft sensor capable of demonstrating proprioceptive and tactile sensory perception utilizing CNF bundles has been shown. Furthermore, a 16-point pressure-sensitive flexible sensor array mimicking slow adapting low threshold mechanoreceptors of glabrous skin was demonstrated. Such devices in tandem with neuromorphic circuits can potentially recreate the sense of touch in robotic arms and restore somatosensory perception in amputees

    3D printed pneumatic soft actuators and sensors: their modeling, performance quantification, control and applications in soft robotic systems

    Get PDF
    Continued technological progress in robotic systems has led to more applications where robots and humans operate in close proximity and even physical contact in some cases. Soft robots, which are primarily made of highly compliant and deformable materials, provide inherently safe features, unlike conventional robots that are made of stiff and rigid components. These robots are ideal for interacting safely with humans and operating in highly dynamic environments. Soft robotics is a rapidly developing field exploiting biomimetic design principles, novel sensor and actuation concepts, and advanced manufacturing techniques. This work presents novel soft pneumatic actuators and sensors that are directly 3D printed in one manufacturing step without requiring postprocessing and support materials using low-cost and open-source fused deposition modeling (FDM) 3D printers that employ an off-the-shelf commercially available soft thermoplastic poly(urethane) (TPU). The performance of the soft actuators and sensors developed is optimized and predicted using finite element modeling (FEM) analytical models in some cases. A hyperelastic material model is developed for the TPU based on its experimental stress-strain data for use in FEM analysis. The novel soft vacuum bending (SOVA) and linear (LSOVA) actuators reported can be used in diverse robotic applications including locomotion robots, adaptive grippers, parallel manipulators, artificial muscles, modular robots, prosthetic hands, and prosthetic fingers. Also, the novel soft pneumatic sensing chambers (SPSC) developed can be used in diverse interactive human-machine interfaces including wearable gloves for virtual reality applications and controllers for soft adaptive grippers, soft push buttons for science, technology, engineering, and mathematics (STEM) education platforms, haptic feedback devices for rehabilitation, game controllers and throttle controllers for gaming and bending sensors for soft prosthetic hands. These SPSCs are directly 3D printed and embedded in a monolithic soft robotic finger as position and touch sensors for real-time position and force control. One of the aims of soft robotics is to design and fabricate robotic systems with a monolithic topology embedded with its actuators and sensors such that they can safely interact with their immediate physical environment. The results and conclusions of this thesis have significantly contributed to the realization of this aim

    Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Get PDF
    This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices

    High deformation multifunctional composites: materials, processes, and applications

    Get PDF
    Structural health monitoring (SHM) is a non-destructive process of collecting and analysing data from structures to evaluate their conditions and predict the remaining lifetime. Multifunctional sensors are increasingly used in smart structures to self-sense and monitor the damages through the measurements of electrical resistivity of composites materials. Polymer-based sensors possess exceptional properties for SHM applications, such as low cost and simple processing, durability, flexibility and excellent piezoresistive sensitivity. Thermoplastic, thermoplastic elastomers and elastomer matrices can be combined with conductive nanofillers to develop piezoresistive sensors. Polymer, reinforcement fillers, processing and design have critical influences in the overall properties of the composite sensors. Together with the properties of the functional composites, environmental concerns are being increasingly relevant for applications, involving advances in materials selection and manufacturing technologies, In this scenario, additive manufacturing is playing an increasing role in modern technological solutions. Stretchable multifunctional composites applications include piezoresistive, dielectric elastomers (mainly for actuators), thermoelectric, or magnetorheological materials [1]. In the following, piezoresistive materials and applications will be mainly addressed based on their increasing implementation into applications.Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2019 and UID/EMS/00151/2019. The authors thank the FCT for financial support under SFRH/BPD/110914/2015 (P. C) and SFRH/BPD/117838/2016 (J. Pereira) grants. Financial support from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06

    Specialized CNT-based Sensor Framework for Advanced Motion Tracking

    Get PDF
    In this work, we discuss the design and development of an advanced framework for high-fidelity finger motion tracking based on Specialized Carbon Nanotube (CNT) stretchable sensors developed at our research facilities. Earlier versions of the CNT sensors have been employed in the high-fidelity finger motion tracking Data Glove commercialized by Yamaha, Japan. The framework presented in this paper encompasses our continuing research and development of more advanced CNT-based sensors and the implementation of novel high-fidelity motion tracking products based on them. The CNT sensor production and communication framework components are considered in detail and wireless motion tracking experiments with the developed hardware and software components integrated with the Yamaha Data Glove are reported

    Low Profile Stretch Sensor for Soft Wearable Robotics

    Get PDF
    This paper presents a low profile stretch sensor for integration into soft structures, robots and wearables. The sensor mechanism uses a single piece of highly flexible and light weight optical fibre and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre, a technique often referred as macrobending light loss. In this arrangement, the optical fibre originates from sensor’s electronic unit, passes through a stretchable encasing structure in a macrobend pattern, and then loop back to the same unit resulting in a simplified electrical and optical design; the closed optical loop allows for no electronics at one end of the sensor making it safe for human robotics applications, and no optical interference with the external environment eliminating the need for complex conditioning circuitries. Of particular interest of the soft robotics community, the ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. Our experimental results indicate that the optical fibre’s bending radius is the dominant design parameter for sufficiently complex patterns, a finding that can facilitate generalisation of the sensing methods across different scales. The measurement performance of the mechanism and its impact on the stiffness of the encasing structure is benchmarked against a custom calibration and testing system
    corecore