296 research outputs found

    ATHENA Research Book

    Get PDF
    The ATHENA European University is an alliance of nine Higher Education Institutions with the mission of fostering excellence in research and innovation by facilitating international cooperation. The ATHENA acronym stands for Advanced Technologies in Higher Education Alliance. The partner institutions are from France, Germany, Greece, Italy, Lithuania, Portugal, and Slovenia: the University of Orléans, the University of Siegen, the Hellenic Mediterranean University, the Niccolò Cusano University, the Vilnius Gediminas Technical University, the Polytechnic Institute of Porto, and the University of Maribor. In 2022 institutions from Poland and Spain joined the alliance: the Maria Curie-Skłodowska University and the University of Vigo. This research book presents a selection of the ATHENA university partners' research activities. It incorporates peer-reviewed original articles, reprints and student contributions. The ATHENA Research Book provides a platform that promotes joint and interdisciplinary research projects of both advanced and early-career researchers

    Recent Advances in Forensic Anthropological Methods and Research

    Get PDF
    Forensic anthropology, while still relatively in its infancy compared to other forensic science disciplines, adopts a wide array of methods from many disciplines for human skeletal identification in medico-legal and humanitarian contexts. The human skeleton is a dynamic tissue that can withstand the ravages of time given the right environment and may be the only remaining evidence left in a forensic case whether a week or decades old. Improved understanding of the intrinsic and extrinsic factors that modulate skeletal tissues allows researchers and practitioners to improve the accuracy and precision of identification methods ranging from establishing a biological profile such as estimating age-at-death, and population affinity, estimating time-since-death, using isotopes for geolocation of unidentified decedents, radiology for personal identification, histology to assess a live birth, to assessing traumatic injuries and so much more

    Identification of biomarkers of the retinoic acid signaling pathway in the zebrafish embryo model to predict human developmental toxicants

    Get PDF
    This dissertation falls within the context of the paradigm shift in regulatory toxicology testing which promotes using a mechanistic-based approach based on in vitro tests instead of traditional animal testing to predict chemical hazards to human such as developmental toxicity. The novel research expands the understanding of developmental toxicity pathways by studying chemically-induced gene expression changes related to the perturbation of the retinoic acid signaling pathway (RA-SP) in a vertebrate embryo model. By using the zebrafish embryo (ZE) model it was possible to take advantage of the conservation of this biological pathway across vertebrate taxa, to predict potential human developmental toxicity. The ZE model is not new, however it has been primarily used and optimized for its morphology readout due to the transparent eggs enabling morphological observations during chemical exposure. However, improvements and harmonization are necessary to utilize this model with a reliable molecular level readout, to reveal relevant changes in gene expression. In chapter 2, the protocol design was refined to identify gene expression (GE) changes in the ZE. This was done by investigating the optimal exposure duration to study such changes due to the perturbation of the RA-SP. An exposure of ZE to the RA-SP agonist all-trans retinoic acid (ATRA) was performed using 6 different exposure durations, ranging from 2-117 hrs. These results identified that 4h exposure was the optimal exposure duration to study chemically-induced GE regulation specifically related to the RA-SP perturbation, thereby optimizing the ZE protocol for GE analysis. In chapters 3 and 4, the optimized ZE-GE protocol was employed to identify GE biomarker candidates for maldevelopment. After exposing ZE to two teratogenic compounds known to perturb the RA-SP (ATRA and Valproic Acid, VPA) and one non-teratogenic control compound (Folic Acid, FA), the chemically-induced perturbation of the RA-SP was explored using a whole genome scale GE analysis approach (RNAseq). The 3 test compounds each showed a specific mRNA expression profile, with 248 genes commonly regulated by both teratogenic compounds (ATRA and VPA) but not by FA. These 248 genes were implicated in several developmental processes. 62 differentially expressed genes (DEGs) were associated with nervous system development and were further examined in Chapter 3. These 62 genes were identified as potential biomarkers of early neurodevelopmental toxicity. In chapter 4, the perturbation of RA-SP on the GE associated with development of mesoderm derived tissues was investigated using bioinformatics methods. The investigation identified gene ontology (GO)-terms related to 47 DEGs. Literature indicates that these genes were normally expressed among 3 mesodermal sections (paraxial, intermediate, and lateral plate section) and 6 mesodermal tissues (somites, striated muscle, bone, kidney, circulatory system, and blood). These 47 DEGs were identified as potential biomarkers of early mesodermal maldevelopment or novel potential biomarkers for specific mesodermal organs. These proposed biomarker candidates advance the knowledge on the retinoic acid-mediated developmental toxicity mechanism. As their responses become even more broadly characterized by exploring different exposure regimes and the profiles of different chemicals, these biomarkers could contribute to predictive tools in animal-free chemical hazard and risk assessment

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    2017 - The Twenty-second Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-second Annual Symposium of Student Scholars, held on April 20, 2017. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1019/thumbnail.jp

    A Textbook of Advanced Oral and Maxillofacial Surgery

    Get PDF
    The scope of OMF surgery has expanded; encompassing treatment of diseases, disorders, defects and injuries of the head, face, jaws and oral cavity. This internationally-recognized specialty is evolving with advancements in technology and instrumentation. Specialists of this discipline treat patients with impacted teeth, facial pain, misaligned jaws, facial trauma, oral cancer, cysts and tumors; they also perform facial cosmetic surgery and place dental implants. The contents of this volume essentially complements the volume 1; with chapters that cover both basic and advanced concepts on complex topics in oral and maxillofacial surgery

    Washington University Senior Undergraduate Research Digest (WUURD), Spring 2018

    Get PDF
    From the Washington University Office of Undergraduate Research Digest (WUURD), Vol. 13, 05-01-2018. Published by the Office of Undergraduate Research. Joy Zalis Kiefer, Director of Undergraduate Research and Associate Dean in the College of Arts & Scien

    ATHENA Research Book, Volume 1

    Get PDF
    The ATHENA European University is an alliance of nine Higher Education Institutions with the mission of fostering excellence in research and innovation by facilitating international cooperation. The ATHENA acronym stands for Advanced Technologies in Higher Education Alliance. The partner institutions are from France, Germany, Greece, Italy, Lithuania, Portugal, and Slovenia: the University of Orléans, the University of Siegen, the Hellenic Mediterranean University, the Niccolò Cusano University, the Vilnius Gediminas Technical University, the Polytechnic Institute of Porto, and the University of Maribor. In 2022 institutions from Poland and Spain joined the alliance: the Maria Curie-Skłodowska University and the University of Vigo. This research book presents a selection of the ATHENA university partners' research activities. It incorporates peer-reviewed original articles, reprints and student contributions. The ATHENA Research Book provides a platform that promotes joint and interdisciplinary research projects of both advanced and early-career researchers

    Kinematic Analysis of Multi-Fingered, Anthropomorphic Robotic Hands

    Get PDF
    The ability of stable grasping and fine manipulation with the multi-fingered robot hand with required precision and dexterity is playing an increasingly important role in the applications like service robots, rehabilitation, humanoid robots, entertainment robots, industries etc.. A number of multi-fingered robotic hands have been developed by various researchers in the past. The distinct advantages of a multi-fingered robot hand having structural similarity with human hand motivate the need for an anthropomorphic robot hand. Such a hand provides a promising base for supplanting human hand in execution of tedious, complicated and dangerous tasks, especially in situations such as manufacturing, space, undersea etc. These can also be used in orthopaedic rehabilitation of humans for improving the quality of the life of people having orthopedically and neurological disabilities. The developments so far are mostly driven by the application requirements. There are a number of bottlenecks with industrial grippers as regards to the stability of grasping objects of irregular geometries or complex manipulation operations. A multi-fingered robot hand can be made to mimic the movements of a human hand. The present piece of research work attempts to conceptualize and design a multi-fingered, anthropomorphic robot hand by structurally imitating the human hand. In the beginning, a brief idea about the history, types of robotic hands and application of multi-fingered hands in various fields are presented. A review of literature based on different aspects of the multi-fingered hand like structure, control, optimization, gasping etc. is made. Some of the important and more relevant literatures are elaborately discussed and a brief analysis is made on the outcomes and shortfalls with respect to multi-fingered hands. Based on the analysis of the review of literature, the research work aims at developing an improved anthropomorphic robot hand model in which apart from the four fingers and a thumb, the palm arch effect of human hand is also considered to increase its dexterity. A robotic hand with five anthropomorphic fingers including the thumb and palm arch effect having 25 degrees-of-freedom in all is investigated in the present work. Each individual finger is considered as an open loop kinematic chain and each finger segment is considered as a link of the manipulator. The wrist of the hand is considered as a fixed point. The kinematic analyses of the model for both forward kinematics and inverse kinematic are carried out. The trajectories of the tip positions of the thumb and the fingers with respect to local coordinate system are determined and plotted. This gives the extreme position of the fingertips which is obtained from the forward kinematic solution with the help of MATLAB. Similarly, varying all the joint iv angles of the thumb and fingers in their respective ranges, the reachable workspace of the hand model is obtained. Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for solving the inverse kinematic problem of the fingers. Since the multi-fingered hand grasps the object mainly through its fingertips and the manipulation of the object is facilitated by the fingers due to their dexterity, the grasp is considered to be force-closure grasp. The grasping theory and different types of contacts between the fingertip and object are presented and the conditions for stable and equilibrium grasp are elaborately discussed. The proposed hand model is simulated to grasp five different shaped objects with equal base dimension and height. The forces applied on the fingertip during grasping are calculated. The hand model is also analysed using ANSYS to evaluate the stresses being developed at various points in the thumb and fingers. This analysis was made for the hand considering two different hand materials i.e. aluminium alloy and structural steel. The solution obtained from the forward kinematic analysis of the hand determines the maximum size for differently shaped objects while the solution to the inverse kinematic problem indicates the configurations of the thumb and the fingers inside the workspace of the hand. The solutions are predicted in which all joint angles are within their respective ranges. The results of the stress analysis of the hand model show that the structure of the fingers and the hand as a whole is capable of handling the selected objects. The robot hand under investigation can be realized and can be a very useful tool for many critical areas such as fine manipulation of objects, combating orthopaedic or neurological impediments, service robotics, entertainment robotics etc. The dissertation concludes with a summary of the contribution and the scope of further work

    Medical Device Artificial Intelligence: The New Tort Frontier

    Get PDF
    The medical device industry and new technology start-ups have dramatically increased investment in artificial intelligence (AI) applications, including diagnostic tools and AI-enabled devices. These technologies have been positioned to reduce climbing health costs while simultaneously improving health outcomes. Technologies like AI-enabled surgical robots, AI-enabled insulin pumps, and cancer detection applications hold tremendous promise, yet without appropriate oversight, they will likely pose major safety issues. While preventative safety measures may reduce risk to patients using these technologies, effective regulatory-tort regimes also permit recovery when preventative solutions are insufficient. The Food and Drug Administration (FDA), the administrative agency responsible for overseeing the safety and efficacy of medical devices, has not effectively addressed AI system safety issues for its clearance processes. If the FDA cannot reasonably reduce the risk of injury for AI-enabled medical devices, injured patients should be able to rely on ex post recovery options, as in products liability cases. However, the Medical Device Amendments Act (MDA) of 1976 introduced an express preemption clause that the U.S. Supreme Court has interpreted to nearly foreclose liability claims, based almost completely on the comprehensiveness of FDA clearance review processes. At its inception, MDA preemption aimed to balance consumer interests in safe medical devices with efficient, consistent regulation to promote innovation and reduce costs. Although preemption remains an important mechanism for balancing injury risks with device availability, the introduction of AI software dramatically changes the risk profile for medical devices. Due to the inherent opacity and changeability of AI algorithms powering AI machines, it is nearly impossible to predict all potential safety hazards a faulty AI system might pose to patients. This Article identifies key preemption issues for AI machines as they affect ex ante and ex post regulatory-tort allocation, including actual FDA review for parallel claims, bifurcation of software and device reviews, and dynamics of the technology itself that may enable plaintiffs to avoid preemption. This Author then recommends an alternative conception of the regulatory-tort allocation for AI machines that will create a more comprehensive and complementary safety and compensatory model
    corecore