12,720 research outputs found

    Direct transcription of low-thrust trajectories with finite trajectory elements

    Get PDF
    This paper presents a novel approach to the design of Low-Thrust trajectories, based on a first order approximated analytical solution of Gauss planetary equations. This analytical solution is shown to have a better accuracy than a second-order explicit numerical integrator and at a lower computational cost. Hence, it can be employed for the fast propagation of perturbed Keplerian motion when moderate accuracy is required. The analytical solution was integrated in a direct transcription method based on a decomposition of the trajectory into direct finite perturbative elements (DFPET). DFPET were applied to the solution of two-point boundary transfer problems. Furthermore the paper presents an example of the use of DFPET for the solution of a multiobjective trajectory optimisation problem in which both the total ∆V and transfer time are minimized with respect to departure and arrival dates. Two transfer problems were used as test cases: a direct transfer from Earth to Mars and a spiral from a low Earth orbit to the International Space Station

    Rapid near-optimal trajectory generation and guidance law development for single-stage-to-orbit airbreathing vehicles

    Get PDF
    General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path angle and flight path angle rate in construction of the flight path over this Mach range, the resulting algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle selection over the entire Mach range from take-off to orbit

    Nonlinear maneuver autopilot for the F-15 aircraft

    Get PDF
    A methodology is described for the development of flight test trajectory control laws based on singular perturbation methodology and nonlinear dynamic modeling. The control design methodology is applied to a detailed nonlinear six degree-of-freedom simulation of the F-15 and results for a level accelerations, pushover/pullup maneuver, zoom and pushover maneuver, excess thrust windup turn, constant thrust windup turn, and a constant dynamic pressure/constant load factor trajectory are presented

    Trajectory optimization and guidance law development for national aerospace plane applications

    Get PDF
    The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case

    Digital robust control law synthesis using constrained optimization

    Get PDF
    Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme

    Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    Get PDF
    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented

    Energy management of three-dimensional minimum-time intercept

    Get PDF
    A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission

    IMPAC: An Integrated Methodology for Propulsion and Airframe Control

    Get PDF
    The National Aeronautics and Space Administration is actively involved in the development of enabling technologies that will lead towards aircraft with new/enhanced maneuver capabilities such as Short Take-Off Vertical Landing (STOVL) and high angle of attack performance. Because of the high degree of dynamic coupling between the airframe and propulsion systems of these types of aircraft, one key technology is the integration of the flight and propulsion control. The NASA Lewis Research Center approach to developing Integrated Flight Propulsion Control (IFPC) technologies is an in-house research program referred to as IMPAC (Integrated Methodology for Propulsion and Airframe Control). The goals of IMPAC are to develop a viable alternative to the existing integrated control design methodologies that will allow for improved system performance and simplicity of control law synthesis and implementation, and to demonstrate the applicability of the methodology to a supersonic STOVL fighter aircraft. Based on some preliminary control design studies that included evaluation of the existing methodologies, the IFPC design methodology that is emerging at the Lewis Research Center consists of considering the airframe and propulsion system as one integrated system for an initial centralized controller design and then partitioning the centralized controller into separate airframe and propulsion system subcontrollers to ease implementation and to set meaningful design requirements for detailed subsystem control design and evaluation. An overview of IMPAC is provided and detailed discussion of the various important design and evaluation steps in the methodology are included

    Extension of finite perturbative elements for multi-revolution, low-thrust propulsion transfer optimisation

    Get PDF
    This paper presents an extension of the analytical solution for perturbed Keplerian motion of a spacecraft under the effect of a low-thrust action (Zuiani et al., Acta Astronautica, 2011). The new formulation will include the possibility for treating two different thrusting modes, i.e. with a fixed thrust direction either in a rotating or in an inertial frame. Moreover the contribution of the J2 effect is also included in the analytical formulae. It will be shown that this approach allows for the fast computation of long, many revolution spirals while maintaining adequate accuracy, and it is able to include the combined actions of different perturbations. The proposed approach will also be applied to the case of a spacecraft with a low-thrust engine, which is injected into a Geostationary Transfer Orbit and will subsequently use its on-board propulsion to transfer to a final circular orbit around the Earth. The completion of the whole transfer might require several spirals and this makes the use of a full numerical propagation prohibitive on a sequential machine. In the proposed method, the thrusting pattern, duration and start of each thrusting arc, is defined through a parameterised function. The spiral is then propagated with the above-mentioned analytical approximation. A direct optimisation approach is then used to optimise these control parameters in order to minimise the propellant cost of the transfer, given a fixed transfer time and a set of boundary conditions
    • …
    corecore