14,206 research outputs found

    Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes

    Full text link
    New algorithms for computing of asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.Comment: 83 page

    The prediction of extratropical storm tracks by the ECMWF and NCEP ensemble prediction systems

    Get PDF
    The prediction of extratropical cyclones by the European Centre for Medium Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) Ensemble Prediction Systems (EPS) has been investigated using an objective feature tracking methodology to identify and track the cyclones along the forecast trajectories. Overall the results show that the ECMWF EPS has a slightly higher level of skill than the NCEP EPS in the northern hemisphere (NH). However in the southern hemisphere (SH), NCEP has higher predictive skill than ECMWF for the intensity of the cyclones. The results from both EPS indicate a higher level of predictive skill for the position of extratropical cyclones than their intensity and show that there is a larger spread in intensity than position. Further analysis shows that the predicted propagation speed of cyclones is generally too slow for the ECMWF EPS and show a slight bias for the intensity of the cyclones to be overpredicted. This is also true for the NCEP EPS in the SH. For the NCEP EPS in the NH the intensity of the cyclones is underpredicted. There is small bias in both the EPS for the cyclones to be displaced towards the poles. For each ensemble forecast of each cyclone, the predictive skill of the ensemble member that best predicts the cyclones position and intensity was computed. The results are very encouraging showing that the predictive skill of the best ensemble member is significantly higher than that of the control forecast in terms of both the position and intensity of the cyclones. The prediction of cyclones before they are identified as 850 hPa vorticity centers in the analysis cycle was also considered. It is shown that an indication of extratropical cyclones can be given by at least 1 ensemble member 7 days before they are identified in the analysis. Further analysis of the ECMWF EPS shows that the ensemble mean has a higher level of skill than the control forecast, particularly for the intensity of the cyclones, 2 from day 3 of the forecast. There is a higher level of skill in the NH than the SH and the spread in the SH is correspondingly larger. The difference between the ensemble mean and spread is very small for the position of the cyclones, but the spread of the ensemble is smaller than the ensemble mean error for the intensity of the cyclones in both hemispheres. Results also show that the ECMWF control forecast has Ā½ to 1 day more skill than the perturbed members, for both the position and intensity of the cyclones, throughout the forecast

    Subgradient Techniques for Passivity Enforcement of Linear Device and Interconnect Macromodels

    Get PDF
    This paper presents a class of nonsmooth convex optimization methods for the passivity enforcement of reduced-order macromodels of electrical interconnects, packages, and linear passive devices. Model passivity can be lost during model extraction or identification from numerical field solutions or direct measurements. Nonpassive models may cause instabilities in transient system-level simulation, therefore a suitable postprocessing is necessary in order to eliminate any passivity violations. Different from leading numerical schemes on the subject, passivity enforcement is formulated here as a direct frequency-domain calHinfty{{cal H}_infty} norm minimization through perturbation of the model state-space parameters. Since the dependence of this norm on the parameters is nonsmooth, but continuous and convex, we resort to the use of subdifferentials and subgradients, which are used to devise two different algorithms. We provide a theoretical proof of the global optimality for the solution computed via both schemes. Numerical results confirm that these algorithms achieve the global optimum in a finite number of iterations within a prescribed accuracy leve

    A guaranteed-convergence framework for passivity enforcement of linear macromodels

    Get PDF
    Passivity enforcement is a key step in the extraction of linear macromodels of electrical interconnects and packages for Signal and Power Integrity applications. Most state-of-the-art techniques for passivity enforcement are based on suboptimal or approximate formulations that do not guarantee convergence. We introduce in this paper a new rigorous framework that casts passivity enforcement as a convex non-smooth optimization problem. Thanks to convexity, we are able to prove convergence to the optimal solution within a finite number of steps. The effectiveness of this approach is demonstrated through various numerical example

    A century of enzyme kinetics. Should we believe in the Km and vmax estimates?

    Get PDF
    The application of the quasi-steady-state approximation (QSSA) in biochemical kinetics allows the reduction of a complex biochemical system with an initial fast transient into a simpler system. The simplified system yields insights into the behavior of the biochemical reaction, and analytical approximations can be obtained to determine its kinetic parameters. However, this process can lead to inaccuracies due to the inappropriate application of the QSSA. Here we present a number of approximate solutions and determine in which regions of the initial enzyme and substrate concentration parameter space they are valid. In particular, this illustrates that experimentalists must be careful to use the correct approximation appropriate to the initial conditions within the parameter space

    Shared inputs, entrainment, and desynchrony in elliptic bursters: from slow passage to discontinuous circle maps

    Full text link
    What input signals will lead to synchrony vs. desynchrony in a group of biological oscillators? This question connects with both classical dynamical systems analyses of entrainment and phase locking and with emerging studies of stimulation patterns for controlling neural network activity. Here, we focus on the response of a population of uncoupled, elliptically bursting neurons to a common pulsatile input. We extend a phase reduction from the literature to capture inputs of varied strength, leading to a circle map with discontinuities of various orders. In a combined analytical and numerical approach, we apply our results to both a normal form model for elliptic bursting and to a biophysically-based neuron model from the basal ganglia. We find that, depending on the period and amplitude of inputs, the response can either appear chaotic (with provably positive Lyaponov exponent for the associated circle maps), or periodic with a broad range of phase-locked periods. Throughout, we discuss the critical underlying mechanisms, including slow-passage effects through Hopf bifurcation, the role and origin of discontinuities, and the impact of noiseComment: 17 figures, 40 page
    • ā€¦
    corecore