200 research outputs found

    A 0.8 V T Network-Based 2.6 GHz Downconverter RFIC

    Get PDF
    A 2.6 GHz downconverter RFIC is designed and implemented using a 0.18 μm CMOS standard process. An important goal of the design is to achieve the high linearity that is required in WiMAX systems with a low supply voltage. A passive T phase-shift network is used as an RF input stage in a Gilbert cell to reduce supply voltage. A single supply voltage of 0.8 V is used with a power consumption of 5.87 mW. The T network-based downconverter achieves a conversion gain (CG) of 5 dB, a single-sideband noise figure (NF) of 16.16 dB, an RF-to-IF isolation of greater than 20 dB, and an input-referred third-order intercept point (IIP3) of 1 dBm when the LO power of -13 dBm is applied

    Multipath Polyphase Circuits and their Application to RF Transceivers

    Get PDF
    Nonlinearity and time-variance in radio frequency (RF) circuits leads to unwanted harmonics and intermodulation products, e.g. in power amplifiers and mixers. This paper reviews a recently proposed multipath polyphase circuit technique which can cancel such harmonics and intermodulation products. This will be illustrated using a power upconverter IC as an example. The upconverter works from DC to 2.4 GHz, and the multipath polyphase technique cleans its spectrum up to the 17th harmonic, keeping unwanted spurious responses more than 40dB below the carrier. The technique can also be useful for other applications, and some possible applications will be discussed

    A 300-800MHz Tunable Filter and Linearized LNA applied in a Low-Noise Harmonic-Rejection RF-Sampling Receiver

    Get PDF
    A multiband flexible RF-sampling receiver aimed at software-defined radio is presented. The wideband RF sampling function is enabled by a recently proposed discrete-time mixing downconverter. This work exploits a voltage-sensing LNA preceded by a tunable LC pre-filter with one external coil to demonstrate an RF-sampling receiver with low noise figure (NF) and high harmonic rejection (HR). The second-order LC filter provides voltage pre-gain and attenuates the source noise aliasing, and it also improves the HR ratio of the sampling downconverter. The LNA consists of a simple amplifier topology built from inverters and resistors to improve the third-order nonlinearity via an enhanced voltage mirror technique. The RF-sampling receiver employs 8 times oversampling covering 300 to 800 MHz in two RF sub-bands. The chip is realized in 65 nm CMOS and the measured gain across the band is between 22 and 28 dB, while achieving a NF between 0.8 to 4.3 dB. The IIP2 varies between +38 and +49 dBm and the IIP3 between -14 dBm and -9 dBm, and the third and fifth order HR ratios are more than 60 dB. The LNA and downconverter consumes 6 mW, and the clock generator takes 12 mW at 800 MHz RF.\ud \u

    CMOS RF front-end design for terrestrial and mobile digital television systems

    Get PDF
    With the increasing demand for high quality TV service, digital television (DTV) is replacing the conventional analog television. DTV tuner is one of the most critical blocks of the DTV receiver system; it down-converts the desired DTV RF channel to baseband or a low intermediate frequency with enough quality. This research is mainly focused on the analysis and realization of low-cost low-power front-ends for ATSC terrestrial DTV and DVB-H mobile DTV tuner systems. For the design of the ATSC terrestrial tuner, a novel double quadrature tuner architecture, which can not only minimize the tuner power consumption but also achieve the fully integration, has been proposed. A double quadrature down-converter has been designed and fabricated with TSMC 0.35õm CMOS technology; the measurement results verified the proposed concepts. For the mobile DTV tuner, a zero-IF architecture is used and it can achieve the DVB-H specifications with less than 200mW power consumption. In the implementation of the mobile DVB-H tuner, a novel RF variable gain amplifier (RFVGA) and a low flicker noise current-mode passive mixer have been proposed. The proposed RFVGA achieves high dynamic range and robust input impedance matching performance, which is the main design challenge for the traditional implementations. The current-mode passive mixer achieves high-gain, low noise (especially low flicker noise) and high-linearity (over 10dBm IIP3) with low power supplies; it is believed that this is a promising topology for low voltage high dynamic range mixer applications. The RFVGA has been fabricated in TSMC 0.18õm CMOS technology and the measurement results agree well with the theoretical ones

    Discrete-Time Mixing Receiver Architecture for RF-Sampling Software-Defined Radio

    Get PDF
    A discrete-time (DT) mixing architecture for RF-sampling receivers is presented. This architecture makes RF sampling more suitable for software-defined radio (SDR) as it achieves wideband quadrature demodulation and wideband harmonic rejection. The paper consists of two parts. In the first part, different downconversion techniques are classified and compared, leading to the definition of a DT mixing concept. The suitability of CT-mixing and RF-sampling receivers to SDR is also discussed. In the second part, we elaborate the DT-mixing architecture, which can be realized by de-multiplexing. Simulation shows a wideband 90° phase shift between I and Q outputs without systematic channel bandwidth limitation. Oversampling and harmonic rejection relaxes RF pre-filtering and reduces noise and interference folding. A proof-of-concept DT-mixing downconverter has been built in 65 nm CMOS, for 0.2 to 0.9 GHz RF band employing 8-times oversampling. It can reject 2nd to 6th harmonics by 40 dB typically and without systematic channel bandwidth limitation. Without an LNA, it achieves a gain of -0.5 to 2.5 dB, a DSB noise figure of 18 to 20 dB, an IIP3 = +10 dBm, and an IIP2 = +53 dBm, while consuming less than 19 mW including multiphase clock generation

    Novel Approaches in RF/Analog CMOS Spectrum Sensing and Its Applications

    Get PDF
    Real time spectrum sensing refers to searching for possible signals at a specific time and location, which is applicable to cognitive radio (CR) for primary signal detection and ultra-wideband (UWB) radio for interferer detection. There are several approaches for spectrum sensing. Choosing a proper method for spectrum sensing necessitates evaluating several trade-offs among sensing time, accuracy, power consumption and simplicity of implementation. In this dissertation several approaches for spectrum sensing along with the applications to CR and UWB receivers are presented. A novel simple spectrum sensing technique for detecting weak primary signals with negative signal-to-noise ratio (SNR) is proposed, which is called quasi-cyclostationary feature detection (QCFD) technique. Moreover, a simple, reliable, and fast real-time spectrum sensing technique based on phasers, which are dispersive delay structures (DDSs), is proposed. Lastly, a UWB receiver robust to the narrowband (NB) blockers, in the vicinity of UWB frequency, is presented. To increase the robustness of the UWB receiver towards interferers, a dynamic blocker detector, utilizing a phaser-based real time spectrum sensing technique, is employed. The proposed spectrum sensing methods provide the best solutions for the intended applications, considering the trade-offs, compared to the state-of-the-art CMOS spectrum sensors

    Design of Analog-to-Digital Converters with Embedded Mixing for Ultra-Low-Power Radio Receivers

    Get PDF
    In the field of radio receivers, down-conversion methods usually rely on one (or more) explicit mixing stage(s) before the analog-to-digital converter (ADC). These stages not only contribute to the overall power consumption but also have an impact on area and can compromise the receiver’s performance in terms of noise and linearity. On the other hand, most ADCs require some sort of reference signal in order to properly digitize an analog input signal. The implementation of this reference signal usually relies on bandgap circuits and reference buffers to generate a constant, stable, dc signal. Disregarding this conventional approach, the work developed in this thesis aims to explore the viability behind the usage of a variable reference signal. Moreover, it demonstrates that not only can an input signal be properly digitized, but also shifted up and down in frequency, effectively embedding the mixing operation in an ADC. As a result, ADCs in receiver chains can perform double-duty as both a quantizer and a mixing stage. The lesser known charge-sharing (CS) topology, within the successive approximation register (SAR) ADCs, is used for a practical implementation, due to its feature of “pre-charging” the reference signal prior to the conversion. Simulation results from an 8-bit CS-SAR ADC designed in a 0.13 μm CMOS technology validate the proposed technique

    BiCMOS high-performance ICs : from DC to mm-wave

    Get PDF
    Progress with silicon and silicon germanium (SiGe) based BiCMOS technologies over the past few years has been very impressive. This enables the implementation of traditional microwave and emerging mm-wave applications in silicon. The paper gives an overview of several high-performance ICs that have been implemented in a state-of-the-art BiCMOS technology (QUBiC4). Examples of high-performance ICs are described ranging from basic building blocks for mobile applications to highly integrated receiver and transmitter ICs for applications up to the mm-wave range

    Broadband Direct RF Digitization Receivers

    Full text link

    Digitally-Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference

    Get PDF
    A software-defined radio (SDR) receiver with improved robustness to out-of-band interference (OBI) is presented. Two main challenges are identified for an OBI-robust SDR receiver: out-of-band nonlinearity and harmonic mixing. Voltage gain at RF is avoided, and instead realized at baseband in combination with low-pass filtering to mitigate blockers and improve out-of-band IIP3. Two alternative “iterative” harmonic-rejection (HR) techniques are presented to achieve high HR robust to mismatch: a) an analog two-stage polyphase HR concept, which enhances the HR to more than 60 dB; b) a digital adaptive interference cancelling (AIC) technique, which can suppress one dominating harmonic by at least 80 dB. An accurate multiphase clock generator is presented for a mismatch-robust HR. A proof-of-concept receiver is implemented in 65 nm CMOS. Measurements show 34 dB gain, 4 dB NF, and 3.5 dBm in-band IIP3 while the out-of-band IIP3 is + 16 dBm without fine tuning. The measured RF bandwidth is up to 6 GHz and the 8-phase LO works up to 0.9 GHz (master clock up to 7.2 GHz). At 0.8 GHz LO, the analog two-stage polyphase HR achieves a second to sixth order HR > dB over 40 chips, while the digital AIC technique achieves HR > 80 dB for the dominating harmonic. The total power consumption is 50 mA from a 1.2 V supply
    corecore