329 research outputs found

    Real-time Body Tracking and Projection Mapping in the Interactive Arts

    Get PDF
    Projection mapping, a subtopic of augmented reality, displays computer-generated light visualizations from projectors onto the real environment. A challenge for projection mapping in performing interactive arts is dynamic body movements. Accuracy and speed are key components for an immersive application of body projection mapping and dependent on scanning and processing time. This thesis presents a novel technique to achieve real-time body projection mapping utilizing a state of the art body tracking device, Microsoft’s Azure Kinect DK, by using an array of trackers for error minimization and movement prediction. The device\u27s Sensor and Bodytracking SDKs allow multiple device synchronization. We combine our tracking results from this feature with motion prediction to provide an accurate approximation for body joint tracking. Using the new joint approximations and the depth information from the Kinect, we create a silhouette and map textures and animations to it before projecting it back onto the user. Our implementation of gesture detection provides interaction between the user and the projected images. Our results decreased the lag time created from the devices, code, and projector to create a realistic real-time body projection mapping. Our end goal was to display it in an art show. This thesis was presented at Burning Man 2019 and Delfines de San Carlos 2020 as interactive art installations

    Visual Monitoring of Driver and Passenger Control Panel Interactions

    Get PDF

    Exploring the practicality of wearable gesture recognition

    Get PDF

    Sensor architectures and technologies for upper limb 3d surface reconstruction: A review

    Get PDF
    3D digital models of the upper limb anatomy represent the starting point for the design process of bespoke devices, such as orthoses and prostheses, which can be modeled on the actual patient’s anatomy by using CAD (Computer Aided Design) tools. The ongoing research on optical scanning methodologies has allowed the development of technologies that allow the surface reconstruction of the upper limb anatomy through procedures characterized by minimum discomfort for the patient. However, the 3D optical scanning of upper limbs is a complex task that requires solving problematic aspects, such as the difficulty of keeping the hand in a stable position and the presence of artefacts due to involuntary movements. Scientific literature, indeed, investigated different approaches in this regard by either integrating commercial devices, to create customized sensor architectures, or by developing innovative 3D acquisition techniques. The present work is aimed at presenting an overview of the state of the art of optical technologies and sensor architectures for the surface acquisition of upper limb anatomies. The review analyzes the working principles at the basis of existing devices and proposes a categorization of the approaches based on handling, pre/post-processing effort, and potentialities in real-time scanning. An in-depth analysis of strengths and weaknesses of the approaches proposed by the research community is also provided to give valuable support in selecting the most appropriate solution for the specific application to be addressed

    Effective Gesture Based Framework for Capturing User Input

    Full text link
    Computers today aren't just confined to laptops and desktops. Mobile gadgets like mobile phones and laptops also make use of it. However, one input device that hasn't changed in the last 50 years is the QWERTY keyboard. Users of virtual keyboards can type on any surface as if it were a keyboard thanks to sensor technology and artificial intelligence. In this research, we use the idea of image processing to create an application for seeing a computer keyboard using a novel framework which can detect hand gestures with precise accuracy while also being sustainable and financially viable. A camera is used to capture keyboard images and finger movements which subsequently acts as a virtual keyboard. In addition, a visible virtual mouse that accepts finger coordinates as input is also described in this study. This system has a direct benefit of reducing peripheral cost, reducing electronics waste generated due to external devices and providing accessibility to people who cannot use the traditional keyboard and mouse
    • …
    corecore