64 research outputs found

    An Energy Harvesting Solution for IoT Sensors Using MEMS Technology

    Get PDF
    The significant development of IoT sensors will play a critical role in a large number of applications. It is predicted that billions of IoT sensors will be used worldwide by 2020 [1]. Batteries are commonly utilized to power on sensors, but they are depleted and they require maintenance and replacement. Battery replacement for billions of sensors is a daunting task and battery disposal for IoT sensors can become an environmental problem. Energy harvesting from ambient sources presents a viable solution to overcome these problems. Among all energy sources, light is considered as one of the best sources due to its high energy density and availability in both indoor and outdoor environments. In order to make an energy harvesting system efficient, many methods have been proposed in the literature to extract the maximum energy while minimizing the power consumption by the energy harvesting circuitry. In this work, a boost converter circuit is designed using MEMS-based switches to reduce the leakage current and power loss caused by conventional transistor-based switches. A light energy harvesting method is also proposed utilizing available components of a typical IoT sensor. The reuse of available components in the proposed solution reduces the overall power consumption and the area overhead of the energy harvesting solution

    Modeling And Design Of Multi-port Dc/dc Converters

    Get PDF
    In this dissertation, a new satellite platform power architecture based on paralleled three-port DC/DC converters is proposed to reduce the total satellite power system mass. Moreover, a fourport DC/DC converter is proposed for renewable energy applications where several renewable sources are employed. Compared to the traditional two-port converter, three-port or four-port converters are classified as multi-port converters. Multi-port converters have less component count and less conversion stage than the traditional power processing solution which adopts several independent two-port converters. Due to their advantages multi-port converters recently have attracted much attention in academia, resulting in many topologies for various applications. But all proposed topologies have at least one of the following disadvantages: 1) no bidirectional port; 2) lack of proper isolation; 3) too many active and passive components; 4) no softswitching. In addition, most existing research focuses on the topology investigation, but lacks study on the multi-port converter’s control aspects, which are actually very challenging since it is a multi-input multi-output control system and has so many cross-coupled control loops. A three-port converter is proposed and used for space applications. The topology features bidirectional capability, low component count and soft-switching for all active switches, and has one output port to meet certain isolating requirements. For the system level control strategy, the multi-functional central controller has to achieve maximal power harvesting for the solar panel, the battery charge control for the battery, and output voltage regulation for the dc bus. In order to design these various controllers, a good dynamic model of the control object should be obtained first. Therefore, a modeling procedure based on a traditional state-space averaging method is v proposed to characterize the dynamic behavior of such a multi-port converter. The proposed modeling method is clear and easy to follow, and can be extended for other multi-port converters. In order to boost the power level of the multi-port converter system and allow redundancy, the three-port converters are paralleled together. The current sharing control for the multi-port converters has rarely been reported. A so called “dual loop” current sharing control structure is identified to be suitable for the paralleled multi-port converters, since its current loop and the voltage loop can be considered and designed independently, which simplifies the multi-port converter’s loop analysis. The design criteria for that dual loop structure are also studied to achieve good current sharing dynamics while guaranteeing the system stability. The renewable energy applications are continuously demanding the low cost solution, so that the renewable energy might have a more competitive dollar per kilowatt figure than the traditional fossil fuel power generation. For this reason, the multi-port converter is a good candidate for such applications due to the low component count and low cost. Especially when several renewable sources are combined to increase the power delivering certainty, the multi-port solution is more beneficial since it can replace more separate converters. A four-port converter is proposed to interface two different renewable sources, such as the wind turbine and the solar panel, one bidirectional battery device, and the galvanically isolated load. The four-port converter is based on the traditional half-bridge topology making it easy for the practicing power electronics engineer to follow the circuit design. Moreover, this topology can be extended into n input ports which allow more input renewable sources. vi Finally, the work is summarized and concluded, and references are listed

    A Biofuel-Cell-Based Energy Harvester With 86% Peak Efficiency and 0.25-V Minimum Input Voltage Using Source-Adaptive MPPT

    Get PDF
    This article presents an efficient cold-starting energy harvester system, fabricated in 65-nm CMOS. The proposed harvester uses no external electrical components and is compatible with biofuel-cell (BFC) voltage and power ranges. A power-efficient system architecture is proposed to keep the internal circuitry operating at 0.4 V while regulating the output voltage at 1 V using switched-capacitor dc–dc converters and a hysteretic controller. A startup enhancement block is presented to facilitate cold startup with any arbitrary input voltage. A real-time on-chip 2-D maximum power point tracking with source degradation tracing is also implemented to maintain power efficiency maximized over time. The system performs cold startup with a minimum input voltage of 0.39 V and continues its operation if the input voltage degrades to as low as 0.25 V. Peak power efficiency of 86% is achieved at 0.39 V of input voltage and 1.34 μW of output power with 220 nW of average power consumption of the chip. The end-to-end power efficiency is kept above 70% for a wide range of loading powers from 1 to 12 μW. The chip is integrated with a pair of lactate BFC electrodes with 2 mm of diameter on a prototype-printed circuit board (PCB). Integrated operation of the chip with the electrodes and a lactate solution is demonstrated

    Efficient power management circuits for energy harvesting applications

    Get PDF
    Low power IoT devices are growing in numbers and by 2020 there will be more than 25 Billion of those in areas such as wearables, smart homes, remote surveillance, transportation and industrial systems, including many others. Many IoT electronics either will operate from stand-alone energy supply (e.g., battery) or be self-powered by harvesting from ambient energy sources or have both options. Harvesting sustainable energy from ambient environment plays significant role in extending the operation lifetime of these devices and hence, lower the maintenance cost of the system, which in turn help make them integral to simpler systems. Both for battery-powered and harvesting capable systems, efficient power delivery unit remains an essential component for maximizing energy efficiency. The goal of this research is to investigate the challenges of energy delivery for low power electronics considering both energy harvesting as well as battery-powered conditions and to address those challenges. Different challenges of energy harvesting from low voltage energy sources based on the limitations of the sources, the type of the regulator used and the pattern of the load demands have been investigated. Different aspects of the each challenges are further investigated to seek optimized solutions for both load specific and generalized applications. A voltage boost mechanism is chosen as the primary mechanism to investigate and to addressing those challenges, befitting the need for low power applications which often rely on battery voltage or on low voltage energy harvesting sources. Additionally, a multiple output buck regulator is also discussed. The challenges analyzed include very low voltage start up issues for an inductive boost regulator, cascading of boost regulator stages, and reduction of the number of external component through reusing those. Design techniques for very high conversion ratio, bias current reduction with autonomous bias gating, battery-less cold start, component and power stage multiplexing for reconfigurable and multi-domain regulators are presented. Measurement results from several silicon prototypes are also presented.Ph.D

    Design of Low-Cost Energy Harvesting and Delivery Systems for Self-Powered Devices: Application to Authentication IC

    Get PDF
    This thesis investigates the development of low-cost energy harvesting and delivery systems for low-power low-duty-cycle devices. Initially, we begin by designing a power management scheme for on-demand power delivery. The baseline implementation is also used to identify critical challenges for low-power energy harvesting. We further propose a robust self-powered energy harvesting and delivery system (EHDS) design as a solution to achieve energy autonomy in standalone systems. The design demonstrates a complete ecosystem for low-overhead pulse-frequency modulated (PFM) harvesting while reducing harvesting window confinement and overall implementation footprint. Two transient-based models are developed for improved accuracy during design space exploration and optimization for both PFM power conversion and energy harvesting. Finally, a low-power authentication IC is demonstrated and projected designs for self-powered System-on-Chips (SoCs) are presented. The proposed designs are proto-typed in two test-chips in a 65nm CMOS process and measurement data showcase improved performance in terms of battery power, cold-start duration, passives (inductance and capacitance) needed, and end-to-end harvesting/conversion efficiency.Ph.D

    Power Management Techniques for Supercapacitor Based IoT Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. January 2018. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xi, 89 pages.The emerging internet of things (IoT) technology will connect many untethered devices, e.g. sensors, RFIDs and wearable devices, to improve health lifestyle, automotive, smart buildings, etc. This thesis proposes one typical application of IoT: RFID for blood temperature monitoring. Once the blood is donated and sealed in a blood bag, it is required to be stored in a certain temperature range (+2~+6°C for red cell component) before distribution. The proposed RFID tag is intended to be attached to the blood bag and continuously monitor the environmental temperature during transportation and storage. When a reader approaches, the temperature data is read out and the tag is fully recharged wirelessly within 2 minutes. Once the blood is distributed, the tag can be reset and reused again. Such a biomedical application has a strong aversion to toxic chemicals, so a batteryless design is required for the RFID tag. A passive RFID tag, however, cannot meet the longevity requirement for the monitoring system (at least 1 week). The solution of this thesis is using a supercapacitor (supercap) instead of a battery as the power supply, which not only lacks toxic heavy metals, but also has quicker charge time (~1000x over batteries), larger operating temperature range (-40~+65°C), and nearly infinite shelf life. Although nearly perfect for this RFID application, a supercap has its own disadvantages: lower energy density (~30x smaller than batteries) and unstable output voltage. To solve the quick charging and long lasting requirements of the RFID system, and to overcome the intrinsic disadvantages of supercaps, an overall power management solution is proposed in this thesis. A reconfigurable switched-capacitor DC-DC converter is proposed to convert the unstable supercap's voltage (3.5V~0.5V) to a stable 1V output voltage efficiently to power the subsequent circuits. With the help of the 6 conversion ratios (3 step-ups, 3 step-downs), voltage protection techniques, and low power designs, the converter can extract 98% of the stored energy from the supercap, and increase initial energy by 96%. Another switched-inductor buck-boost converter is designed to harvest the ambient RF energy to charge the supercap quickly. Because of the variation of the reader distance and incident wave angle, the input power level also has large fluctuation (5uW~5mW). The harvester handles this large power range by a power estimator enhanced MPPT controller with an adaptive integration capacitor array. Also, the contradiction between low power and high tracking speed is improved by adaptive MPPT frequency

    A Comprehensive Review on Small Satellite Microgrids

    Get PDF

    Integrated Topologies And Digital Control For Satellite Power Management And Distribution Systems

    Get PDF
    This work is focused on exploring advanced solutions for space power management and distribution (PMAD) systems. As spacecraft power requirements continue to increase, paralleled by the pressures for reducing cost and overall system weight, power electronics engineers will continue to face major redesigns of the space power systems in order to meet such challenges. Front-end PMAD systems, used to interface the solar sources and battery backup to the distribution bus, need to be designed with increased efficiency, reliability, and power density. A new family of integrated single-stage power converter structures is introduced here. This family allows the interface and control of multiple power sources and storage devices in order to optimize utilization of available resources. Employing single-stage power topologies, these converters control power flow efficiently and cost-effectively. This is achieved by modifying the operation and control strategies of isolated soft-switched half-bridge and full-bridge converters--two of the most popular two-port converter topologies. These topologies are reconfigured and utilized to realize three power processing paths. These paths simultaneously utilize the power devices, allowing increased functionality while promising reduced losses and enhanced power densities. Each of the proposed topologies is capable of performing simultaneous control of two of its three ports. Control objectives include battery or ultra-capacitor charge regulation, solar array maximum power point tracking (MPPT), and/or bus voltage regulation. Another advantage of the proposed power structure is that current engineering design concepts can be used to optimize the new topologies in a fashion similar to the mother topologies. This includes component selection and magnetic design procedures, as well as achieving soft-switching for increased efficiency at higher switching frequencies. Galvanic isolation of the load port through high-frequency transformers provides design flexibility for high step-up/step-down conversion ratios. It further allows the converters to be used as power electronics building blocks (PEBB) with outputs connected in different series/parallel combinations to meet different load requirements. Utilizing such converters promises significant savings in size, weight, and costs of the power management system as well as the devices it manages. Chapter 1 of this dissertation provides an introduction to the requirements, challenges, and trends of space PMAD. A review of existing multi-port converter technologies and digital control techniques is given in Chapter 2. Chapter 3 discusses different PMAD system architectures. It outlines the basic concepts used for PMAD integration and discusses the potential for improvement. Chapters 4 and 5 present and discuss the operation and characteristics of three different integrated multi-port converters. Chapter 6 presents improved methods for practical digital control of switching converters, which are especially useful in complex multi-objective controllers used for PMAD. This is followed by conclusions and suggested future work
    • …
    corecore