2,174 research outputs found

    Speech Modeling and Robust Estimation for Diagnosis of Parkinson’s Disease

    Get PDF

    A combined statistical and machine learning approach for single channel speech enhancement

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2015. Major: Electrical Engineering. Advisor: Zhi-Quan Luo. 1 computer file (PDF); ix, 116 pages.In this thesis, we study the single-channel speech enhancement problem, the goal of which is to recover a desired speech from a monaural noisy recording. Speech enhancement is a focal issue to study due to is widespread usage in speech-related applications, such as hearing aids, mobile communications, and speech recognition systems. Three speech enhancement algorithms are proposed. In the rst algorithm, the Wiener Non-negative Matrix Factorization (WNMF), we combine the traditional Wiener ltering and the NMF into a single optimization problem. The objective is to minimize the mean square error, similar to Wiener ltering, and the constraints ensure the enhanced speeches are sparsely representable by the speech model learned by NMF. WNMF is novel because it utilizes NMF to capture the speech-specific structure while simultaneously leveraging it, thus improving the Wiener filtering. For the second algorithm, we propose a Sparse Gaussian Mixture Model (SGMM) that extends the traditional NMF and the Gaussian model. SGMM better captures the complex structure of speech than the traditional NMF. To control for overrepresentation of SGMM, we impose sparsity in order to ensure that only a few Gaussian models are simultaneously active. Computationally, it is achieved by using a l0-norm in the constraint of the maximum-likelihood (ML) estimation. The contribution of SGMM is in solving the constrained ML estimation, which has a closed form update even with the non-convex and non-smooth l0-norm constraint. The final algorithm proposed is the Sparse NMF + Deep Neural Network (SNMF-DNN), in which we treat speech enhancement as a supervised regression problem - the goal being to estimate the optimal enhancement gain. SNMF, originally designed for source separation, is used to extract features from the noisy recording. DNN is subsequently trained to estimate the optimal enhancement gain. Although our system is simple and does not require any sophisticated handcrafted features, we are able to demonstrate a substantial improvement in both intelligibility and enhanced speech quality

    Probabilistic Modeling Paradigms for Audio Source Separation

    Get PDF
    This is the author's final version of the article, first published as E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, M. E. Davies. Probabilistic Modeling Paradigms for Audio Source Separation. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 7, pp. 162-185. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch007file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04Most sound scenes result from the superposition of several sources, which can be separately perceived and analyzed by human listeners. Source separation aims to provide machine listeners with similar skills by extracting the sounds of individual sources from a given scene. Existing separation systems operate either by emulating the human auditory system or by inferring the parameters of probabilistic sound models. In this chapter, the authors focus on the latter approach and provide a joint overview of established and recent models, including independent component analysis, local time-frequency models and spectral template-based models. They show that most models are instances of one of the following two general paradigms: linear modeling or variance modeling. They compare the merits of either paradigm and report objective performance figures. They also,conclude by discussing promising combinations of probabilistic priors and inference algorithms that could form the basis of future state-of-the-art systems

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    NMF-based compositional models for audio source separation

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 김남수.Many classes of data can be represented by constructive combinations of parts. Most signal and data from nature have nonnegative values and can be explained and reconstructed by constructive models. By the constructive models, only the additive combination is allowed and it does not result in subtraction of parts. The compositional models include dictionary learning, exemplar-based approaches, and nonnegative matrix factorization (NMF). Compositional models are desirable in many areas including image or visual signal processing, text information processing, audio signal processing, and music information retrieval. In this dissertation, we choose NMF for compositional models and NMF-based target source separation is performed for the application. The target source separation is the extraction or reconstruction of the target signals in the mixture signals which consists with the target and interfering signals. The target source separation can be thought as blind source separation (BSS). BSS aims that the original unknown source signals are extracted without knowing or with very limited information. However, in these days, much of prior information is frequently utilized, and various approaches have been proposed for single channel source separation. NMF basically approximates a nonnegative data matrix V with a product of nonnegative basis and encoding matrices W and H, i.e., V WH. Since both W and H are nonnegative, NMF often leads to a part based representation of the data. The methods based on NMF have shown impressive results in single channel source separation The objective function of NMF is generally presented Euclidean distant, Kullback-Leibler divergence, and Itakura-saito divergence. Many optimization methods have been proposed and utilized, e.g., multiplicative update rule, projected gradient descent and NeNMF. However, NMF-based audio source separation has some issues as follows: non-uniqueness of the bases, a high dependence to the prior information, the overlapped subspace between target bases and interfering bases, a disregard of the encoding vectors from the training phase, and insucient analysis of sparse NMF. In this dissertation, we propose new approaches to resolve the above issues. In section 4, we propose a novel speech enhancement method that combines the statistical model-based enhancement scheme with the NMF-based gain function. For a better performance in time-varying noise environments, both the speech and noise bases of NMF are adapted simultaneously with the help of the estimated speech presence probability. In section 5, we propose a discriminative NMF (DNMF) algorithm which exploits the reconstruction error for the interfering signals as well as the target signal based on target bases. In section 6, we propose an approach to robust bases estimation in which an incremental strategy is adopted. Based on an analogy between clustering and NMF analysis, we incrementally estimate the NMF bases similar to the modied k-means and Linde-Buzo-Gray algorithms popular in the data clustering area. In Section 7, the distribution of the encoding vector is modeled as a multivariate exponential PDF (MVE) with a single scaling factor for each source. In Section 8, several sparse penalty terms for NMF are analyzed and compared in terms of signal to distortion ratio, sparseness of encoding vectors, reconstruction error, and entropy of basis vectors. The new objective function which applied sparse representation and discriminative NMF (DNMF) is also proposed.1 Introduction 1 1.1 Audio source separation 1 1.2 Speech enhancement 3 1.3 Measurements 4 1.4 Outline of the dissertation 6 2 Compositional model and NMF 9 2.1 Compositional model 9 2.2 NMF 14 2.2.1 Update rules: MuR, PGD 16 2.2.2 Modied NMF 20 3 NMF-based audio source separation and issues 23 3.1 NMF-based audio source separation 23 3.2 Problems of NMF in audio source separation 26 3.2.1 A high dependency to the prior knowledge 26 3.2.2 A overlapped subspace between the target and interfering basis matrices 28 3.2.3 A non-uniqueness of the bases 29 3.2.4 A prior knowledge of the encoding vectors 30 3.2.5 Sparse NMF for the source separation 32 4 Online bases update 33 4.1 Introduction 33 4.2 NMF-based speech enhancement using spectral gain function 36 4.3 Speech enhancement combining statistical model-based and NMFbased methods with the on-line bases update 38 4.3.1 On-line update of speech and noise bases 40 4.3.2 Determining maximum update rates 42 4.4 Experiment result 43 5 Discriminative NMF 47 5.1 Introduction 47 5.2 Discriminative NMF utilizing cross reconstruction error 48 5.2.1 DNMF using the reconstruction error of the other source 49 5.2.2 DNMF using the interference factors 50 5.3 Experiment result 52 6 Incremental approach for bases estimate 57 6.1 Introduction 57 6.2 Incremental approach based on modied k-means clustering and Linde-Buzo-Gray algorithm 59 6.2.1 Based on modied k-means clustering 59 6.2.2 LBG based incremental approach 62 6.3 Experiment result 63 6.3.1 Modied k-means clustering based approach 63 6.3.2 LBG based approach 66 7 Prior model of encoding vectors 77 7.1 Introduction 77 7.2 Prior model of encoding vectors based on multivariate exponential distribution 78 7.3 Experiment result 82 8 Conclusions 87 Bibliography 91 국문초록 105Docto
    corecore