20,966 research outputs found

    An on-line approach for evaluating trigonometric functions

    Get PDF
    This thesis investigates the evaluation of trigonometric functions based on an on-line arithmetic approach. On-line algorithms have been developed to evaluate the sine and cosine functions. Error analysis and heuristics are carried out to arrive at a minimal error algorithm based on the series expansion of the sine and cosine function. A logical design based on the algorithm is presented where the unit is designed as a set of basic modules. A detailed bit slice design of each module is also presented. A simulator was designed as an experimental tool for synthesis of the on-line algorithms, and a tool for performance evaluation

    Acceleration of Coarse Grain Molecular Dynamics on GPU Architectures

    Get PDF
    Coarse grain (CG) molecular models have been proposed to simulate complex sys- tems with lower computational overheads and longer timescales with respect to atom- istic level models. However, their acceleration on parallel architectures such as Graphic Processing Units (GPU) presents original challenges that must be carefully evaluated. The objective of this work is to characterize the impact of CG model features on parallel simulation performance. To achieve this, we implemented a GPU-accelerated version of a CG molecular dynamics simulator, to which we applied specic optimizations for CG models, such as dedicated data structures to handle dierent bead type interac- tions, obtaining a maximum speed-up of 14 on the NVIDIA GTX480 GPU with Fermi architecture. We provide a complete characterization and evaluation of algorithmic and simulated system features of CG models impacting the achievable speed-up and accuracy of results, using three dierent GPU architectures as case studie

    Sniper: scalable and accurate parallel multi-core simulation

    Get PDF
    Sniper is a next generation parallel, high-speed and accurate x86 simulator. This multi-core simulator is based on the interval core model and the Graphite simulation infrastructure, allowing for fast and accurate simulation and for trading off simulation speed for accuracy to allow a range of flexible simulation options when exploring different homogeneous and heterogeneous multi-core architectures. The Sniper simulator allows one to perform timing simulations for both multi-programmed workloads and multi-threaded, shared-memory applications running on 10s to 100+ cores, at a high speed when compared to existing simulators. The main feature of the simulator is its core model which is based on interval simulation, a fast mechanistic core model. Interval simulation raises the level of abstraction in architectural simulation which allows for faster simulator development and evaluation times; it does so by ’jumping’ between miss events, called intervals. Sniper has been validated against multi-socket Intel Core2 and Nehalem systems and provides average performance prediction errors within 25% at a simulation speed of up to several MIPS. This simulator, and the interval core model, is useful for uncore and system-level studies that require more detail than the typical one-IPC models, but for which cycle-accurate simulators are too slow to allow workloads of meaningful sizes to be simulated. As an added benefit, the interval core model allows the generation of CPI stacks, which show the number of cycles lost due to different characteristics of the system, like the cache hierarchy or branch predictor, and lead to a better understanding of each component’s effect on total system performance. This extends the use for Sniper to application characterization and hardware/software co-design. The Sniper simulator is available for download at http://snipersim.org and can be used freely for academic research

    Research in the design of high-performance reconfigurable systems

    Get PDF
    The initial control and programming philosophies of the RELAPSE are discussed. A block diagram showing the relationship of the Arithmetic Units (composed of Stages and Bit Processors), to the Functional Units, and other components of the RELAPSE is used to guide this discussion. The latest version of the Bit Processor design is presented. Included is a detailed discussion of the Bit Processor's new scratch pad memory component. The section also clarifies the usage of the Bit Processor's processing registers, and Input/Output functions. The final design phase of the Arithmetic Unit is underway by a study of the Proposed IEEE Floating Point Standard. The decisions on conformation to this standard will be used as inputs into the finalization of the designs of the Bit Processor, Stage, and Arithmetic Units of the RELAPSE

    Real-time simulation of jet engines with digital computer. 1: Fabrication and characteristics of the simulator

    Get PDF
    The fabrication and performance of a real time jet engine simulator using a digital computer are discussed. The use of the simulator in developing the components and control system of a jet engine is described. Comparison of data from jet engine simulation tests with actual engine tests was conducted with good agreement
    corecore