2,290 research outputs found

    Coverage and Connectivity Aware Neural Network Based Energy Efficient Routing in Wireless Sensor Networks

    Full text link
    There are many challenges when designing and deploying wireless sensor networks (WSNs). One of the key challenges is how to make full use of the limited energy to prolong the lifetime of the network, because energy is a valuable resource in WSNs. The status of energy consumption should be continuously monitored after network deployment. In this paper, we propose coverage and connectivity aware neural network based energy efficient routing in WSN with the objective of maximizing the network lifetime. In the proposed scheme, the problem is formulated as linear programming (LP) with coverage and connectivity aware constraints. Cluster head selection is proposed using adaptive learning in neural networks followed by coverage and connectivity aware routing with data transmission. The proposed scheme is compared with existing schemes with respect to the parameters such as number of alive nodes, packet delivery fraction, and node residual energy. The simulation results show that the proposed scheme can be used in wide area of applications in WSNs.Comment: 16 Pages, JGraph-Hoc Journa

    Clustering and Hybrid Routing in Mobile Ad Hoc Networks

    Get PDF
    This dissertation focuses on clustering and hybrid routing in Mobile Ad Hoc Networks (MANET). Specifically, we study two different network-layer virtual infrastructures proposed for MANET: the explicit cluster infrastructure and the implicit zone infrastructure. In the first part of the dissertation, we propose a novel clustering scheme based on a number of properties of diameter-2 graphs to provide a general-purpose virtual infrastructure for MANET. Compared to virtual infrastructures with central nodes, our virtual infrastructure is more symmetric and stable, but still light-weight. In our clustering scheme, cluster initialization naturally blends into cluster maintenance, showing the unity between these two operations. We call our algorithm tree-based since cluster merge and split operations are performed based on a spanning tree maintained at some specific nodes. Extensive simulation results have shown the effectiveness of our clustering scheme when compared to other schemes proposed in the literature. In the second part of the dissertation, we propose TZRP (Two-Zone Routing Protocol) as a hybrid routing framework that can balance the tradeoffs between pure proactive, fuzzy proactive, and reactive routing approaches more effectively in a wide range of network conditions. In TZRP, each node maintains two zones: a Crisp Zone for proactive routing and efficient bordercasting, and a Fuzzy Zone for heuristic routing using imprecise locality information. The perimeter of the Crisp Zone is the boundary between pure proactive routing and fuzzy proactive routing, and the perimeter of the Fuzzy Zone is the boundary between proactive routing and reactive routing. By adjusting the sizes of these two zones, a reduced total routing control overhead can be achieved

    The Overlapped K-hop (OK) Clustering Algorithm

    Get PDF
    Clustering is a standard approach for achieving efficient and scalable performance in wireless sensor networks. Clustering algorithms are mostly heuristic in nature and aim at generating the minimum number of disjoint clusters. In this report, we formulate the overlapping multi-hop clustering problem as an extension to the k-dominating set problem. Then we propose a fast, randomized, distributed multi-hop clustering algorithm (OK) for organizing the sensors in a wireless sensor network into overlapping clusters with the goal of minimizing the overall communication overhead, and processing complexity. OK assumes a quasi-stationary network where nodes are location-unaware and have equal significance. No synchronization is needed between nodes. OK is scalable; the clustering formation terminates in a constant time regardless of the network topology or size. The protocol incurs low overhead in terms of processing cycles and messages exchanged. We analyze the effect of different parameters (e.g. node density, network connectivity) on the performance of the clustering algorithm in terms of communication overhead, node coverage, and average cluster size. The results show that although we have overlapped clusters, the OK clustering algorithm still produces approximately equal-sized clusters

    Real-Time Guarantees For Wireless Networked Sensing And Control

    Get PDF
    Wireless networks are increasingly being explored for mission-critical sensing and control in emerging domains such as connected and automated vehicles, Industrial 4.0, and smart city. In wireless networked sensing and control (WSC) systems, reliable and real- time delivery of sensed data plays a crucial role for the control decision since out-of-date information will often be irrelevant and even leads to negative effects to the system. Since WSC differs dramatically from the traditional real-time (RT) systems due to its wireless nature, new design objective and perspective are necessary to achieve real-time guarantees. First, we proposed Optimal Node Activation Multiple Access (ONAMA) scheduling protocol that activates as many nodes as possible while ensuring transmission reliability (in terms of packets delivery ratio). We implemented and tested ONAMA on two testbeds both with 120+ sensor nodes. Second, we proposed algorithms to address the problem of clustering heterogeneous reliability requirements into a limit set of service levels. Our solutions are optimal, and they also provide guaranteed reliability, which is critical for wireless sensing and control. Third, we proposed a probabilistic real-time wireless communication framework that effectively integrates real-time scheduling theory with wireless communication. The per- packet probabilistic real-time QoS was formally modeled. By R3 mapping, the upper-layer requirement and the lower-layer link reliability are translated into the number of trans- mission opportunities needed. By optimal real-time communication scheduling as well as admission test and traffic period optimization, the system utilization is maximized while the schedulability is maintained. Finally, we further investigated the problem of how to minimize delay variation (i.e., jitter) while ensuring that packets are delivered by their deadlines

    A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS

    Get PDF
    A Wireless Personal Area Network (WPAN) is an ad hoc network that consists of devices that surround an individual or an object. Bluetooth® technology is especially suitable for formation of WPANs due to the pervasiveness of devices with Bluetooth® chipsets, its operation in the unlicensed Industrial, Scientific, Medical (ISM) frequency band, and its interference resilience. Bluetooth® technology has great potential to become the de facto standard for communication between heterogeneous devices in WPANs. The piconet, which is the basic Bluetooth® networking unit, utilizes a Master/Slave (MS) configuration that permits only a single master and up to seven active slave devices. This structure limitation prevents Bluetooth® devices from directly participating in larger Mobile Ad Hoc Networks (MANETs) and Wireless Personal Area Networks (WPANs). In order to build larger Bluetooth® topologies, called scatternets, individual piconets must be interconnected. Since each piconet has a unique frequency hopping sequence, piconet interconnections are done by allowing some nodes, called bridges, to participate in more than one piconet. These bridge nodes divide their time between piconets by switching between Frequency Hopping (FH) channels and synchronizing to the piconet\u27s master. In this dissertation we address scatternet formation, routing, and security to make Bluetooth® scatternet communication feasible. We define criteria for efficient scatternet topologies, describe characteristics of different scatternet topology models as well as compare and contrast their properties, classify existing scatternet formation approaches based on the aforementioned models, and propose a distributed scatternet formation algorithm that efficiently forms a scatternet topology and is resilient to node failures. We propose a hybrid routing algorithm, using a bridge link agnostic approach, that provides on-demand discovery of destination devices by their address or by the services that devices provide to their peers, by extending the Service Discovery Protocol (SDP) to scatternets. We also propose a link level security scheme that provides secure communication between adjacent piconet masters, within what we call an Extended Scatternet Neighborhood (ESN)

    SALAM: A SCALABLE ANCHOR-FREE LOCALIZATION ALGORITHM FOR WIRELESS SENSOR NETWORKS

    Get PDF
    In this dissertation, we present SALAM, a scalable anchor-free protocol for localization in wireless sensor networks. SALAM can determine the positions of sensor nodes without any infrastructure support. We assume that each node has the capability to estimate distances to its corresponding neighbors, that are within its transmission range. SALAM allows to trade the accuracy of the estimated position against node transmission range and/or computational power. The application layer can choose from a whole range of different options, to estimate the sensor node's positions with different accuracy while conserving battery power. Scalability is achieved by dividing the network into overlapping multi-hop clusters each with its own cluster head node. Each cluster head is responsible for building a local relative map corresponding to its cluster using intra-cluster node's range measurements. To obtain the global relative topology of the network, the cluster head nodes collaboratively combine their local maps using simple matrix transformations. In order for two cluster heads to perform a matrix transformation, there must be at least three boundary nodes that belongs to both clusters (i.e. the two clusters are overlapping with degree 3). We formulate the overlapping multi-hop clustering problem and present a randomized distributed heuristic algorithm for solving the problem. We evaluate the performance of the proposed algorithm through analytical analysis and simulation. A major problem with multi-hop relative location estimation is the error accumulated in the node position as it becomes multi-hop away from the cluster head node. We analyze different sources of error and develop techniques to avoid these errors. We also show how the local coordinate system (LCS) affects the accuracy and propose different heuristics to select the LCS. Simulation results show that SALAM achieves precise localization of sensors. We show that our approach is scalable in terms of communication overhead regardless of the network size. In addition, we capture the impact of different parameters on the accuracy of the estimated node's positions. The results also show that SALAM is able to achieve accuracy better than the current ad-hoc localization algorithms

    CDS-MIP: CDS-based Multiple Itineraries Planning for mobile agents in wireless sensor network

    Get PDF
    using multi agents in the wireless sensor networks (WSNs) for aggregating data has gained significant attention. Planning the optimal itinerary of the mobile agent is an essential step before the process of data gathering. Many approaches have been proposed to solve the problem of planning MAs itineraries, but all of those approaches are assuming that the MAs visit all SNs and large number of intermediate nodes. This assumption imposed a burden; the size of agent increases with the increase in the visited SNs, therefore consume more energy and spend more time in its migration. None of those proposed approaches takes into account the significant role that the connected dominating nodes play as virtual infrastructure in such wireless sensor networks WSNs. This article introduces a novel energy-efficient itinerary planning algorithmic approach based on the minimum connected dominating sets (CDSs) for multi-agents dedicated in data gathering process. In our proposed approach, instead of planning the itineraries over all sensor nodes SNs, we plan the itineraries among subsets of the MCDS in each cluster. Thus, no need to move the agent in all the SNs, and the intermediate nodes (if any) in each itinerary will be few. Simulation results have demonstrated that our approach is more efficient than other approaches in terms of overall energy consumption and task execution time

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields
    corecore