5,240 research outputs found

    Supply chain management of blood products: a literature review.

    Get PDF
    This paper presents a review of the literature on inventory and supply chain management of blood products. First, we identify different perspectives on approaches to classifying the existing material. Each perspective is presented as a table in which the classification is displayed. The classification choices are exemplified through the citation of key references or by expounding the features of the perspective. The main contribution of this review is to facilitate the tracing of published work in relevant fields of interest, as well as identifying trends and indicating which areas should be subject to future research.OR in health services; Supply chain management; Inventory; Blood products; Literature review;

    A Survey on Blood Storage and Distribution Systems

    Get PDF
    This paper presents a review of the literature on inventory and supply chain management of blood distribution system. First, we identify different perspectives on approaches to classifying theexisting material. Each perspective is presented as a table in which the classification is displayed. The classification choices are exemplified through the citation of key references or by expounding the features of the perspective. The main contribution of this review is to facilitate the tracing of published work in relevant fields of interest, as well as identifying trends and indicating which areas should be subject to future research

    Modelling and simulation of blood collection systems: improvement of human resources allocation for better cost-effectiveness and reduction of candidate donor abandonment

    Get PDF
    International audienceFormal Petri net models were used to describe all relevant donor flows of the various blood collection systems; the Petri net models were converted onto discrete-event simulation models, allowing the evaluation of a large number of scenarios and configurations of blood collection systems. Quantitative models were proposed that encompassed all components of the blood collection systems, such as the donor arrival process, resource capacities and performance indicators. Appropriate experimental designs and cost-effectiveness analyses were used to determine the best configurations of human resources and donor appointment strategies

    Optimising Blood Donation Session Scheduling in South East England

    Get PDF
    It is essential that all countries operate a form of blood banking service, where blood is collected at donation sessions, stored and then distributed to local healthcare providers. It is imperative that these services are efficiently managed to ensure a safe supply of blood and that costs and wastages are kept minimal. Previous works in the area of blood management have focussed primarily on the perishable inventory problem and on routing blood deliveries to hospitals; there has been relatively little work focusing on scheduling blood donation sessions. The primary aim of this research is to provide a tool that allows the National Blood Service (the English and Welsh blood service) to schedule donation sessions so that collection targets are met in such a way that costs are minimised (the Blood Scheduling Problem). As secondary aims, the research identifies the key types of data that blood services should be collecting for this type of problem. Finally, various what-if scenarios are considered, specifically improv- ing donor attendance through paying donors and the proposed changes to the inter-donation times for male and female donors. The Blood Scheduling Problem is formulated as a Mixed Integer Linear Programming (MILP) problem and solved using a variable bound heuristic. Data from the South East of England is used to create a collection schedule, with all further analysis also being carried out on this data set. It was possible to make improvements to the number of units under collected in the current schedule, moreover the number of venues and panels operated could be reduced. Further- more, it was found that paying donors to donate was uneconomical. Finally, changing the inter-donation times could lead to a reduction in the number of shortfalls, even when demand was increased by as much as 20%. Though the model is specific to England and Wales, it can easily be adapted to other countries’ blood services. It is hoped that this model will provide blood services with a model to help them better schedule donation sessions and allow them to identify the data necessary to better understand their performance

    A review of the healthcare-management (modeling) literature published at Manufacturing and Service Operations Management

    Get PDF
    Healthcare systems throughout the world are under pressure to widen access, improve efficiency and quality of care, and reduce inequity. Achieving these conflicting goals requires innovative approaches, utilizing new technologies, data analytics, and process improvements. The operations management community has taken on this challenge: more than 10% of articles published in M&SOM in the period from 2009 to 2018 has developed analytical models that aim to inform healthcare operational decisions and improve medical decision-making. This article presents a review of the research published in M&SOM on healthcare management since its inception 20 years ago and reflects on opportunities for further research

    Platelet inventory management in blood supply chain under demand and supply uncertainty

    Get PDF
    Supply chain management of blood and its products are of paramount importance in medical treatment due to its perishable nature, uncertain demand, and lack of auxiliary substitutes. For example, the Red Blood Cells (RBC's) have a life span of approximately 40 days, whereas platelets have a shelf life of up to five days after extraction from the human body. According to the World Health Organization, approximately 112 million blood units are collected worldwide annually. However, nearly 20 percent of units are discarded in developed nations due to being expired before the final use. A similar trend is noticed in developing countries as well. On the other hand, blood shortage could lead to elective surgeries cancellations. Therefore, managing blood distribution and developing an efficient blood inventory management is considered a critical issue in the supply chain domain. A standard blood supply chain (BSC) achieves the movement of blood products (red blood cells, white blood cells, and platelets) from initial collection to final patients in several echelons. The first step comprises of donation of blood by donors at the donation or mobile centers. The donation sites transport the blood units to blood centers where several tests for infections are carried out. The blood centers then store either the whole blood units or segregate them into their individual products. Finally, they are distributed to the healthcare facilities when required. In this dissertation, an efficient forecasting model is developed to forecast the supply of blood. We leverage five years' worth of historical blood supply data from the Taiwan Blood Services Foundation (TBSF) to conduct our forecasting study. With the generated supply and demand distributioins from historial supply and demand data as inputs, a single objective stochastic model is developed to determine the number of platelet units to order and the time between orders at the hospitals. To reduce platelet shortage and outdating, a collaborative network between the blood centers and hospitals is proposed; the model is extended to determine the optimal ordering policy for a divergent network consisting of multiple blood centers and hospitals. It has been shown that a collaborative system of blood centers and hospitals is better than a decentralized system in which each hospital is supplied with blood only by its corresponding blood center. Furthermore, a mathematical model is proposed based on multi-criteria decision-making (MCDM) techniques, in which different conflicting objective functions are satisfied to generate an efficient and satisfactory solution for a blood supply chain comprising of two hospitals and one blood center. This study also conducted a sensitivity analysis to examine the impacts of the coefficient of demand and supply variation and the settings of cost parameters on the average total cost and the performance measures (units of shortage, outdated units, inventory holding units, and purchased units) for both the blood center and hospitals. The proposed models can also be applied to determine ordering policies for other supply chain of perishable products, such as perishable food or drug supply chains.Includes bibliographical references

    Bloody fast blood collection

    Get PDF
    This thesis consists of four parts: The first part contains an introduction, the second presents approaches for the evaluation of waiting times at blood collection sites, the third uses these to present approaches that improve waiting times at blood collection sites. The final part shows the application of two of the approaches to data from real blood collection sites, followed by the conclusions that can be drawn from this thesis. Part I: Introduction, contains two chapters. Chapter 1 introduces the context for this thesis: blood banks in general, the Dutch blood bank Sanquin and blood collection sites. The chapter sketches some of the challenges faced with respect to blood collection sites. As blood donors are voluntary and non-remunerated, delays and waiting times within blood collection sites should be kept at acceptable levels. However, waiting times are currently not incorporated in staff planning or in other decisions with respect to blood collection sites. These blood collection sites will be the primary focus of this thesis. This thesis provides methods that do take waiting times into account, aiming to decrease waiting times at blood collection sites and leveling work pressure for staff members, without the need for additional staff. Chapter 2 then presents a technical methods that will be used most of the chapters in this thesis: uniformization. Uniformization can be used to transform Continuous Time Markov Chains (CTMCs) — that are very hard to analyze — into Discrete Time Markov Chains (DTMCs) — that are much easier to analyze. The chapter shows how the method works, provides an extensive overview of the literature related to the method, the (technical) intuition behind the method as well as several extensions and applications. Although not all of the extensions and applications are necessary for this thesis, it does provide an overview of one of the most valuable methods for this thesis. Part II: Evaluation, contains two chapters that propose and adapt several methods to compute waiting times and queues at blood collection sites. A blood collection site is best modeled as a time-dependent queueing network, requiring non-standard approaches. Chapter 3 considers a stationary, i.e. not time-dependent model of blood collection sites as a first step. A blood collection site consists of three main stations: Registration, Interview and Donation. All three of the stations can have their own queue. This means that even the stationary model is non-trivial for some computations. However, for the stationary model, an analytic so-called product form expression is derived. Based on this product form, two more results are shown. The first result is that the standard waiting time distributions from M|M|s queues are applicable, as if the queue is in isolation. It is then concluded that no closed form expression exist for the total waiting or delay time distribution, as the distributions of the three stations in tandem are not independent. Therefore a numerical approach is presented to compute the total delay time distribution of a collection site. All of the results are supported by numerical examples based on a Dutch blood collection site. The approach for the computation of the total delay time distribution can also be combined with the approach from Chapter 4 for an extension to a time-dependent setting. Chapter 4 shows an approach to deal with these time-dependent aspects in queueing systems, as often experienced by blood collection sites and other service systems, typically due to time-dependent arrivals and capacities. Easy and quick to use queueing expressions generally do not apply to time-dependent situations. A large number of computational papers has been written about queue length distributions for time-dependent queues, but these are mostly theoretical and based on single queues. This chapter aims to combine computational methods with more realistic time-dependent queueing networks, with an approach based on uniformization. Although uniformization is generally perceived to be too computationally prohibitive, we show that our method is very effective for practical instances, as shown with an example of a Dutch blood collection site. The objective of the results is twofold: to show that a time-dependent queueing network approach can be beneficial and to evaluate possible improvements for Dutch blood collection sites that can only be properly assessed with a time-dependent queueing method. Part III: Optimization, contains four chapters that aim to improve service levels at Sanquin. The first three chapters focus on three different methods to decrease queues at blood collection sites. Chapters 5 and 6 focus on improving the service by optimizing staff allocation to shifts and stations. Chapter 7 focuses on improving the arrival process with the same goal. Chapter 8 is focused at improving inventory management of red blood cells. Donors do not arrive to blood collection sites uniformly throughout the day, but show clear preferences for certain times of the day. However, the arrival patterns that are shown by historical data, are not used for scheduling staff members at blood collection sites. As a first significant step to shorten waiting times we can align staff capacity and shifts with walk-in arrivals. Chapter 5 aims to optimize shift scheduling for blood collection sites. The chapter proposes a two-step procedure. First, the arrival patterns and methods from queueing theory are used to determine the required number of staff members for every half hour. Second, an integer linear program is used to compute optimal shift lengths and starting times, based on the required number of staff members. The chapter is concluded with numerical experiments that show, depending on the scenario, a reduction of waiting times, a reduction of staff members or a combination of both. At a blood collection site three stations (Registration, Interview and Donation) can roughly be distinguished. Staff members at Dutch blood collection sites are often trained to work at any of these stations, but are usually allocated to one of the stations for large fractions of a shift. If staff members change their allocation this is based on an ad hoc decision. Chapter 6 aims to take advantage of this mostly unused allocation flexibility to reduce queues at blood collection sites. As a collection site is a highly stochastic process, both in arrivals and services, an optimal allocation of staff members to the three stations is unknown, constantly changing and a challenge to determine. Chapter 6 provides and applies a so-called Markov Decision Process (MDP) to compute optimal staff assignments. Extensive numerical and simulation experiments show the potential reductions of queues when the reallocation algorithm would be implemented. Based on Dutch blood collection sites, reductions of 40 to 80% on the number of waiting donors seem attainable, depending on the scenario. Chapter 7 also aims to align the arrival of donors with scheduled staff, similarly to Chapter 5. Chapter 7 tries to achieve this by changing the arrivals of donors. By introducing appointments for an additional part of donors, arrivals can be redirected from the busiest times of the day to quiet times. An extended numerical queueing model with priorities is introduced for blood collection sites, as Sanquin wants to incentive donors to make appointments by prioritizing donors with appointments over donors without appointments. Appointment slots are added if the average queue drops below certain limits. The correct values for these limits, i.e. the values that plan the correct number of appointments, are then determined by binary search. Numerical results show that the method succeeds in decreasing excessive queues. However, the proposed priorities might result in unacceptably high waiting times for donors without appointments, and caution is therefore required before implementation. Although this thesis mainly focuses on blood collection sites, many more logistical challenges are present at a blood bank. One of these challenges arises from the expectation that Sanquin can supply hospitals with extensively typed red blood cell units directly from stock. Chapter 8 deals with this challenge. Currently, all units are issued according to the first-in-first-out principle, irrespective of their specific typing. These kind of issuing policies lead to shortages for rare blood units. Shortages for rare units could be avoided by keeping them in stock for longer, but this could also lead to unnecessary wastage. Therefore, to avoid both wastage and shortages, a trade-off between the age and rarity of a specific unit in stock should be made. For this purpose, we modeled the allocation of the inventory as a circulation flow problem, in which decisions about which units to issue are based on both the age and rarity of the units in stock. We evaluated the model for several settings of the input parameters. It turns out that, especially if only a few donors are typed for some combinations of antigens, shortages can be avoided by saving rare blood products. Moreover, the average issuing age remains unchanged. Part IV: Practice and Outlook concludes this thesis. The first of two chapters in this part shows the combined application of two approaches from this thesis to data from three collection sites in the Netherlands. The final chapter of this thesis presents the conclusions that can be drawn from this thesis and discusses an outlook for further research. Chapter 9 shows the combined application of the methods in Chapters 5 and 6 to three real collection sites in Dutch cities: Nijmegen, Leiden and Almelo. The collection sites in Nijmegen and Leiden are both large fixed collection sites. The collection site in Almelo is a mobile collection site. The application of each one of the methods individually reduce waiting times significantly, and the combined application of the methods reduces waiting times even further. Simultaneously, small reductions in the number of staff hours are attainable. The results from Chapter 9 summarize the main message of this thesis: waiting time for blood donors at blood collection sites can be reduced without the need for more staff members when the working times of staff members are used more effectively and efficiently, and controlling the arrival process of donors. The approaches presented in this thesis can be used for this purpose. This is not only beneficial for blood donors, but will also result in more balanced workload for staff members, as fluctuations in this workload are reduced significantly

    Optimal allocation of blood products

    Get PDF
    The high cost of collection and the short shelf life of apheresis platelets demand efficient inventory management to reduce outdates and shortages. Apheresis platelets are licensed for seven days, and blood centers are keen on knowing the consequences of various product collection and distribution strategies. To reduce outdates, inventory managers typically distribute the older units first, thereby following first-in first-out (FIFO) policy; however, hospital blood banks would prefer that the blood center issues out the freshest units first, equivalent to a last-in first-out (LIFO) policy. This study addresses the optimal distribution policy to achieve a desired outdate, shortage and average age of apheresis platelets. A comprehensive literature review was conducted on previous models studied to efficiently distribute blood products. However, most of the research on blood inventory management has been restricted to the hospital blood bank level in terms of ordering policies and inventory levels. This study takes the approach from the perspective of the inventory manager at the regional blood center. The inventory manager needs a reliable forecast of the quantity and timing of future blood supply (collection from donors) and blood demand from hospital blood banks to make an effective decision on blood inventory control. A forecasting method is used in this study to predict collection and demand for Single Donor Platelets (SDPs), and solves the blood inventory problem using a heuristic method and a Linear Programming (LP) with a rolling horizon method to find the near optimal issuing policy, the expected average age, outdate rate, and shortage rate of a blood product from the perspective of the blood center. It is concluded that regional blood centers can distribute with a ‘mixed’ FIFO/LIFO strategy and not significantly affect outdates or ability to cover shortages. For the LP model with a rolling horizon schedule, the inventory manager at the blood center would have to use forecast windows of five to achieve good issuing policies. A simulation study comparing the heuristic method and an LP-based with a rolling horizon method indicated that LP models with forecast windows of five and heuristics methods with a ‘mixed’ FIFO/LIFO strategy can be used to optimize this inventory problem

    OR and simulation in combination for optimization

    Get PDF
    This chapter aims to promote and illustrate the fruitful combination of classical Operations Research (OR) and Computer Simulation. First, a highly instructive example of parallel queues will be studied. This simple example already shows the necessary combination of OR (queueing) and simulation that appears to be of practical interest such as for call center optimization. Next, two more ’real life’ applications are regarded:\ud - blood platelet production and inventory management at blood banks, and \ud - train conflict resolution for railway junctions.\ud Both applications show the useful combination of Simulation and optimization methods from OR, in particular Stochastic Dynamic Programming (SDP) and Markov decision theory (MDP), to obtain simple rules that are nearly optimal. The results are based on real life Dutch case studies and show that this combined OR-Simulation approach can be most useful for ’practical optimization’ and that it is still wide open for further application
    • 

    corecore