1,244 research outputs found

    NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps

    Get PDF
    Molecular biology knowledge can be systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist a number of maps of molecular interactions containing detailed description of various cell mechanisms. It is difficult to explore these large maps, to comment their content and to maintain them. Though there exist several tools addressing these problems individually, the scientific community still lacks an environment that combines these three capabilities together. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. NaviCell combines three features: (1) efficient map browsing based on Google Maps engine; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting the community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of their interest in the context of signaling pathways and cross-talks between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive fashion due to an imbedded blogging system. NaviCell provides an easy way to explore large-scale maps of molecular interactions, thanks to the Google Maps and WordPress interfaces, already familiar to many users. Semantic zooming used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization meaningful to the user. In addition, NaviCell provides a framework for community-based map curation.Comment: 20 pages, 5 figures, submitte

    The Efficacy of Implementing a Small, Low-Cost, Real Time Kinematic GPS System into a Small Unmanned Aerial System Architecture

    Get PDF
    Along with the growing uses for small unmanned aerial systems (UAS) within the Department of Defense (DoD), is the utility of small UAS within the civilian market is also increasing. This has led to significant research and development on small UAS subsystems by the commercial market. The focus of this research is characterizing and investigating the application considerations of a small, low-cost real time kinematic (RTK) GPS receiver system. Work was also accomplished to characterize the accuracy and precision of the commonly used GPS receiver subsystem in small UAS to show the increased utility of the RTK GPS system. The results show that in a static environment, the RTK GPS system outperforms the commonly used standalone GPS receiver by a factor of 100 in two- and three-dimensional precision. However, the results from the tests involving a moving platform exposed several limitations which can degrade the precision of the RTK GPS system to precision values achievable by a standalone GPS receiver. These limitations do not inhibit the RTK GPS system’s ability to perform its primary intended purpose, and can be mitigated through proper integration and application selection of the system. It is recommended that the Air Force Institute of Technology continue to use the investigated RTK GPS system as a ground truth source while proving other navigation technologies for UAS flight

    FPGA Implemetation of Acquisition phase of the GPS Receiver using XSG

    Get PDF
    In the past it was usual to exert a huge effort in the design, simulation, and the real time implementation of the complicated electronic and communication systems, like GNSS receivers. The complexity of the system algorithms combined with the complexity of the available tools created a system that is difficult to track down for debugging or for redesign. So, the simulation and educational tools was different from the prototyping tools. In this paper the parallel search acquisition phase of a GPS receiver was simulated and implemented on FPGA using the same platform and through a graphical programming language. So this paper introduces the fruit of integrating the prototyping tools with the simulation tools as a single platform through which the complicated electronic systems can be simulated and prototyped

    A nonlinear estimator for reconstructing the angular velocity of a spacecraft without rate gyros

    Get PDF
    A scheme for estimating the angular velocity of a spacecraft without rate gyros is presented. It is based upon a nonlinear estimator whose inputs are measured inertial vectors and their calculated time derivatives relative to vehicle axes. It works for all spacecraft attitudes and requires no knowledge of attitude. It can use measurements from a variety of onboard sensors like Sun sensors, star trackers, or magnetometers, and in concert. It can also use look angle measurements from onboard tracking antennas for tracking and data relay satellites or global positioning system satellites. In this paper, it is applied to a Sun point scheme on the Hubble Space Telescope assuming all or most of its onboard rate gyros have failed. Simulation results are presented for verification

    Experimental Validation Of An Integrated Guidance And Control System For Marine Surface Vessels

    Get PDF
    Autonomous operation of marine surface vessels is vital for minimizing human errors and providing efficient operations of ships under varying sea states and environmental conditions which is complicated by the highly nonlinear dynamics of marine surface vessels. To deal with modelling imprecision and unpredictable disturbances, the sliding mode methodology has been employed to devise a heading and a surge displacement controller. The implementation of such a controller necessitates the availability of all state variables of the vessel. However, the measured signals in the current study are limited to the global X and Y positioning coordinates of the boat that are generated by a GPS system. Thus, a nonlinear observer, based on the sliding mode methodology, has been implemented to yield accurate estimates of the state variables in the presence of both structured and unstructured uncertainties. Successful autonomous operation of a marine surface vessel requires a holistic approach encompassing a navigation system, robust nonlinear controllers and observers. Since the overwhelming majority of the experimental work on autonomous marine surface vessels was not conducted in truly uncontrolled real-world environments. The first goal of this work was to experimentally validate a fully-integrated LOS guidance system with a sliding mode controller and observer using a 16’ Tracker Pro Guide V-16 aluminium boat with a 60 hp. Mercury outboard motor operating in the uncontrolled open-water environment of Lake St. Clair, Michigan. The fully integrated guidance and controller-observer system was tested in a model-less configuration, whereby all information provided from the vessel’s nominal model have been ignored. The experimental data serves to demonstrate the robustness and good tracking characteristics of the fully-integrated guidance and controller/observer system by overcoming the large errors induced at the beginning of each segment and converging the boat to the desired trajectory in spite of the presence of environmental disturbances. The second focus of this work was to combine a collision avoidance method with the guidance system that accounted for “International Regulations for Prevention of Collisions at Sea” abbreviated as COLREGS. This new system then needed to be added into the existing architecture. The velocity obstacles method was selected as the base to build upon and additional restrictions were incorporated to account for these additional rules. This completed system was then validated with a software in the loop simulation

    An integrated INS/GPS navigation system for small AUVs using an asynchronous Kalman filter

    Get PDF
    A Small AUV Navigation System (SANS) is being developed at the Naval Postgraduate School. The SANS is an integrated INS/GPS navigation system composed of low-cost, small-size components. It is designed to demonstrate the feasibility of using a low-cost Inertial Measurement Unit (IMU) to navigate between intermittent GPS fixes. This thesis presents recent improvements to the SANS hardware and software. The 486-based ESP computer used in the previous version of SANS is now replaced by an AMD 586DX133 based PC/104 computer to provide more computing power, reliability and compatibility with PC/104 industrial standards. The previous SANS navigation filter consisting of a complementary constant gain filter is now aided by an asynchronous Kalman filter. This navigation filter has six states for orientation estimation (constant gain) and eight states for position estimation (Kalman filtered). Low- frequency DGPS noise is explicitly modeled based on an experimentally obtained autocorrelation function. Ocean currents are also modeled as a low-frequency random process. The asynchronous nature of GPS measurements resulting from AUV submergence or wave splash on the DGPS antennas is also taken into account by adopting an asynchronous Kalman filter as the basis for the SANS software. Matlab simulation studies of the asynchronous filter have been conducted and results documented in this thesis.http://www.archive.org/details/integratedinsgps00hernLieutenant, United States Coast GuardApproved for public release; distribution is unlimited

    AOPA Survey Summary of AGATE Concepts Demonstration October 17-19, 1996

    Get PDF
    An AGATE Concepts Demonstration was conducted at the Annual Aircraft Owners and Pilots Association (AOPA) Convention in 1996. The demonstration consisted of an interactive simulation of a single-pilot, single-engine aircraft in which the participant took off, flew a brief enroute segment and then flew a Global Positioning System (GPS) approach and landing. The participant was provided an advanced 'pathway-in-the-sky' presentation on both a head-up display and a head-down display to follow throughout the flight. A single lever power control and display concept was also provided for control of the engine throughout the flight. A second head-down, multifunction display in the instrument panel provided a moving map display for navigation purposes and monitoring of the status of the aircraft's systems. An estimated 352 people observed or participated in the demonstration, and 144 surveys were collected. The pilot ratings of the participants ranged from student to Air Transport Rating with an average of 1850 hours total flight time. The performance of the participants was surprisingly good, considering the minimal training in a completely new system concept. The overwhelming response was that technologies that simplify piloting tasks are enthusiastically welcomed by pilots of all experience levels. The increase in situation awareness and reduction in pilot workload were universally accepted and lauded as steps in the right direction

    Aeronautical engineering: A continuing bibliography with indexes (supplement 319)

    Get PDF
    This report lists 349 reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles
    corecore