1,282 research outputs found

    Validation of a hemodynamic model for the study of the cerebral venous outflow system using MR imaging and echo- Color doppler data

    Get PDF
    BACKGROUND AND PURPOSE: A comprehensive parameter model was developed to investigate correlations between cerebral hemodynamics and alterations in the extracranial venous circulation due to posture changes and/or extracranial venous obstruction (stenosis). The purpose of this work was to validate the simulation results by using MR imaging and echo-color Doppler experimental blood flow data in humans. MATERIALS AND METHODS: To validate the model outcomes, we used supine average arterial and venous extracerebral blood flow, obtained by using phase-contrast MR imaging from 49 individuals with stenosis in the acquisition plane at the level of the disc between the second and third vertebrae of the left internal jugular vein, 20 with stenosis in the acquisition plane at the level of the disc between the fifth and sixth vertebrae of the right internal jugular vein, and 38 healthy controls without stenosis. Average data from a second group of 10 healthy volunteers screened with an echo-color Doppler technique were used to evaluate flow variations due to posture change. RESULTS: There was excellent agreement between experimental and simulated supine flows. Every simulated CBF fell inside the standard error from the corresponding average experimental value, as well as most of the simulated extracerebral arterial flow (extracranial blood flow from the head and face, measured at the level of the disc between second and third vertebrae) and venous flows. Simulations of average jugular and vertebral blood flow variations due to a change of posture from supine to upright also matched the experimental data. CONCLUSIONS: The good agreement between simulated and experimental results means that the model can correctly reproduce the main factors affecting the extracranial circulation and could be used to study other types of stenotic conditions not represented by the experimental data

    MRI evidence for altered venous drainage and intracranial compliance in mild traumatic brain injury.

    Get PDF
    To compare venous drainage patterns and associated intracranial hydrodynamics between subjects who experienced mild traumatic brain injury (mTBI) and age- and gender-matched controls. Thirty adult subjects (15 with mTBI and 15 age- and gender-matched controls) were investigated using a 3T MR scanner. Time since trauma was 0.5 to 29 years (mean 11.4 years). A 2D-time-of-flight MR-venography of the upper neck was performed to visualize the cervical venous vasculature. Cerebral venous drainage through primary and secondary channels, and intracranial compliance index and pressure were derived using cine-phase contrast imaging of the cerebral arterial inflow, venous outflow, and the craniospinal CSF flow. The intracranial compliance index is the defined as the ratio of maximal intracranial volume and pressure changes during the cardiac cycle. MR estimated ICP was then obtained through the inverse relationship between compliance and ICP. Compared to the controls, subjects with mTBI demonstrated a significantly smaller percentage of venous outflow through internal jugular veins (60.9±21% vs. controls: 76.8±10%; p = 0.01) compensated by an increased drainage through secondary veins (12.3±10.9% vs. 5.5±3.3%; p<0.03). Mean intracranial compliance index was significantly lower in the mTBI cohort (5.8±1.4 vs. controls 8.4±1.9; p<0.0007). Consequently, MR estimate of intracranial pressure was significantly higher in the mTBI cohort (12.5±2.9 mmHg vs. 8.8±2.0 mmHg; p<0.0007). mTBI is associated with increased venous drainage through secondary pathways. This reflects higher outflow impedance, which may explain the finding of reduced intracranial compliance. These results suggest that hemodynamic and hydrodynamic changes following mTBI persist even in the absence of clinical symptoms and abnormal findings in conventional MR imaging

    Modelling physiology of haemodynamic adaptation in short-term microgravity exposure and orthostatic stress on Earth

    Get PDF
    Cardiovascular haemodynamics alters during posture changes and exposure to microgravity. Vascular auto-remodelling observed in subjects living in space environment causes them orthostatic intolerance when they return on Earth. In this study we modelled the human haemodynamics with focus on head and neck exposed to different hydrostatic pressures in supine, upright (head-up tilt), head-down tilt position, and microgravity environment by using a well-developed 1D-0D haemodynamic model. The model consists of two parts that simulates the arterial (1D) and brain-venous (0D) vascular tree. The cardiovascular system is built as a network of hydraulic resistances and capacitances to properly model physiological parameters like total peripheral resistance, and to calculate vascular pressure and the related flow rate at any branch of the tree. The model calculated 30.0&nbsp;mmHg (30%), 7.1&nbsp;mmHg (78%), 1.7&nbsp;mmHg (38%) reduction in mean blood pressure, intracranial pressure and central venous pressure after posture change from supine to upright, respectively. The modelled brain drainage outflow percentage from internal jugular veins is 67% and 26% for supine and upright posture, while for head-down tilt and microgravity is 65% and 72%, respectively. The model confirmed the role of peripheral veins in regional blood redistribution during posture change from supine to upright and microgravity environment as hypothesized in literature. The model is able to reproduce the known haemodynamic effects of hydraulic pressure change and weightlessness. It also provides a virtual laboratory to examine the consequence of a wide range of orthostatic stresses on human haemodynamics

    Cerebral Circulation

    Get PDF
    Diagnostics and diseases related to the cerebrovascular system are constantly evolving and updating. 3D augmented reality or quantification of cerebral perfusion are becoming important diagnostic tools in daily practice and the role of the cerebral venous system is being constantly revised considering new theories such as that of “the glymphatic system.” This book provides updates on models, diagnosis, and treatment of diseases of the cerebrovascular system

    Whole-body mathematical model for simulating intracranial pressure dynamics

    Get PDF
    A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment

    New Insight into Cerebrovascular Diseases

    Get PDF
    “Brain circulation is a true road map that consists of large extended navigation territories and a number of unimagined and undiscovered routes.” Dr. Patricia Bozzetto Ambrosi This book combines an update on the review of cerebrovascular diseases in the form of textbook chapters, which has been carefully reviewed by Dr. Patricia Bozzetto Ambrosi, Drs. Rufai Ahmad and Auwal Abdullahi and Dr. Amit Agrawal, high-performance academic editors with extensive experience in neurodisciplines, including neurology, neurosurgery, neuroscience, and neuroradiology, covering the best standards of neurological practice involving basic and clinical aspects of cerebrovascular diseases. Each topic was carefully revised and prepared using smooth, structured vocabulary, plus superb graphics and scientific illustrations. In emphasizing the most common aspects of cerebrovascular diseases: stroke burden, pathophysiology, hemodynamics, diagnosis, management, repair, and healing, the book is comprehensive but concise and should become the standard reference guide for this neurological approach
    • …
    corecore