30 research outputs found

    Output Feedback Image-Based Visual Servoing of Rotorcrafts

    Full text link
    © 2018, Springer Nature B.V. This paper presents an improved output feedback based image-based visual servoing (IBVS) law for rotorcraft unmanned aerial vehicles (RUAVs). The control law enables a RUAV with a minimal set of sensors, i.e. an inertial measurement unit (IMU) and a single downward facing camera, to regulate its position and heading relative to a planar visual target consisting of multiple points. As compared to our previous work, twofold improvement is made. First, the desired value of the image feature of controlling the vertical motion of the RUAV is a function of other image features instead of a constant. This modification helps to keep the visual target stay in the camera’s field of view by indirectly adjusting the height of the vehicle. Second, the proposed approach simplifies our previous output feedback law by reducing the dimension of the observer filter state space while the same asymptotic stability result is kept. Both simulation and experimental results are presented to demonstrate the performance of the proposed controller

    Integrated Design of Rotary UAV Guidance and Control Systems Utiliz- ing Sliding Mode Control Technique

    Get PDF
    Abstract In this paper, the Integrated Guidance and Control (IGC) law is proposed for the Rotary Unmanned Aerial Vehicle (RUAV). The objective of the IGC law is to consider the nonlinear dynamic characteristics of the RUAV and to design a guidance law which takes into consideration the nonlinear relationship between kinematics and dynamics. In order to control the RUAV system, sliding mode control scheme is adopted. As the RUAV is an under-actuated system, a slack variable approach is used to generate the available control inputs. Through the Lyapunov stability theorem, the stability of the proposed IGC law is proved. In order to verify the performance of the IGC law, numerical simulations are performed for waypoint tracking missions

    TRAJECTORY GENERATION BASED GUIDANCE AND CONTROL OF ROTORCRAFT UNMANNED AERIAL VEHICLES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Automatic Landing of a Rotary-Wing UAV in Rough Seas

    Full text link
    Rotary-wing unmanned aerial vehicles (RUAVs) have created extensive interest in the past few decades due to their unique manoeuverability and because of their suitability in a variety of flight missions ranging from traffic inspection to surveillance and reconnaissance. The ability of a RUAV to operate from a ship in the presence of adverse winds and deck motion could greatly extend its applications in both military and civilian roles. This requires the design of a flight control system to achieve safe and reliable automatic landings. Although ground-based landings in various scenarios have been investigated and some satisfactory flight test results are obtained, automatic shipboard recovery is still a dangerous and challenging task. Also, the highly coupled and inherently unstable flight dynamics of the helicopter exacerbate the difficulty in designing a flight control system which would enable the RUAV to attenuate the gust effect. This thesis makes both theoretical and technical contributions to the shipboard recovery problem of the RUAV operating in rough seas. The first main contribution involves a novel automatic landing scheme which reduces time, cost and experimental resources in the design and testing of the RUAV/ship landing system. The novelty of the proposed landing system enables the RUAV to track slow-varying mean deck height instead of instantaneous deck motion to reduce vertical oscillations. This is achieved by estimating the mean deck height through extracting dominant modes from the estimated deck displacement using the recursive Prony Analysis procedure. The second main contribution is the design of a flight control system with gust-attenuation and rapid position tracking capabilities. A feedback-feedforward controller has been devised for height stabilization in a windy environment based on the construction of an effective gust estimator. Flight tests have been conducted to verify its performance, and they demonstrate improved gust-attenuation capability in the RUAV. The proposed feedback-feedforward controller can dynamically and synchronously compensate for the gust effect. In addition, a nonlinear H1 controller has been designed for horizontal position tracking which shows rapid position tracking performance and gust-attenuation capability when gusts occur. This thesis also contains a description of technical contributions necessary for a real-time evaluation of the landing system. A high-infedlity simulation framework has been developed with the goal of minimizing the number of iterations required for theoretical analysis, simulation verification and flight validation. The real-time performance of the landing system is assessed in simulations using the C-code, which can be easily transferred to the autopilot for flight tests. All the subsystems are parameterized and can be extended to different RUAV platforms. The integration of helicopter flight dynamics, flapping dynamics, ship motion, gust effect, the flight control system and servo dynamics justifies the reliability of the simulation results. Also, practical constraints are imposed on the simulation to check the robustness of the flight control system. The feasibility of the landing procedure is confimed for the Vario helicopter using real-time ship motion data

    Development of flight control laws for a small-scale helicopter

    Get PDF
    This thesis explore the development of models for the simulation of flight and control laws for a Rotary Unmanned Aerial Vehicle (RUAV). The purpose of the department’s project is to make the small scale helicopter capable to complete a planned mission in autonomous flight, with automatic take-off and landing and sense and avoid capabilities. This work deals with analyzing the linearized model, check the trim and implement control laws to help the pilot in the flight path, i.e. change the command from collective and cyclic to altitude, speed and attitude the pilot wish (automatic flight). After this work it will be possible replace the pilot with a flight control system (autonomous flight). First of all has been developed the calculation of trim for the different flight conditions; with those trims have been calculated the aerodynamic derivatives and the linearized system, useful to understand the dynamic of the helicopter. Then it has been analyzed the flight control laws; in particular the control in altitude, the control in forward speed and the control in roll attitude to guarantee the hovering or the flight path. At the end it has made the union between the controls and the non-linear model developed in department

    Accurate navigation applied to landing maneuvers on mobile platforms for unmanned aerial vehicles

    Get PDF
    Drones are quickly developing worldwide and in Europe in particular. They represent the future of a high percentage of operations that are currently carried out by manned aviation or satellites. Compared to fixed-wing UAVs, rotary wing UAVs have as advantages the hovering, agile maneuvering and vertical take-off and landing capabilities, so that they are currently the most used aerial robotic platforms. In operations from ships and boats, the final approach and the landing maneuver are the phases of the operation that involves a higher risk and where it is required a higher level of precision in the position and velocity estimation, along with a high level of robustness in the operation. In the framework of the EC-SAFEMOBIL and the REAL projects, this thesis is devoted to the development of a guidance and navigation system that allows completing an autonomous mission from the take-off to the landing phase of a rotary-wing UAV (RUAV). More specifically, this thesis is focused on the development of new strategies and algorithms that provide sufficiently accurate motion estimation during the autonomous landing on mobile platforms without using the GNSS constellations. In one hand, for the phases of the flights where it is not required a centimetric accuracy solution, here it is proposed a new navigation approach that extends the current estimation techniques by using the EGNOS integrity information in the sensor fusion filter. This approach allows improving the accuracy of the estimation solution and the safety of the overall system, and also helps the remote pilot to have a more complete awareness of the operation status while flying the UAV In the other hand, for those flight phases where the accuracy is a critical factor in the safety of the operation, this thesis presents a precise navigation system that allows rotary-wing UAVs to approach and land safely on moving platforms, without using GNSS at any stage of the landing maneuver, and with a centimeter-level accuracy and high level of robustness. This system implements a novel concept where the relative position and velocity between the aerial vehicle and the landing platform can be calculated from a radio-beacon system installed in both the UAV and the landing platform or through the angles of a cable that physically connects the UAV and the landing platform. The use of a cable also incorporates several extra benefits, like increasing the precision in the control of the UAV altitude. It also facilitates to center the UAV right on top of the expected landing position and increases the stability of the UAV just after contacting the landing platform. The proposed guidance and navigation systems have been implemented in an unmanned rotorcraft and a large number of tests have been carried out under different conditions for measuring the accuracy and the robustness of the proposed solution. Results showed that the developed system allows landing with centimeter accuracy by using only local sensors and that the UAV is able to follow a mobile landing platform in multiple trajectories at different velocities

    Dynamic inversion control for a small-scale helicopter

    Get PDF
    University of Pisa is performing a research finalized to develop Rotary Unmanned Aerial Vehicles (RUAV), starting from small commercial Radio Commanded helicopters, capable to perform autonomous or automatic flight. The aim of this thesis is to develop a non-linear control laws system, based on feedback linearization method, in order to allow the machine to perform automatic missions. This work has been carried out starting from an existing non-linear open-loop model of the helicopter, whose parameters have been identified in a previous work of thesis. In the first part of this work the non-linear system was analyzed in term of trim condition. After the simplification of the commands chain, the system was linearized and both the non-linear and linear system have been excited by collective and cyclic command signals and their responses have been compared. In the second part of the thesis the control laws for automatic flight mode have been developed. Since the attempt to use the input-output exact feedback linearization procedure was ineffective, a cascade linearization method, called dynamic inversion linearization, was used in order to develop the controller. Finally the controller was implemented and tested in order to validate it
    corecore