644 research outputs found

    Developing a calibrated discrete event simulation model of shops of a Dutch phone and subscription retailer during COVID-19 to evaluate shift plans to reduce waiting times

    Get PDF
    The foundational role of simulation is to enable understanding, discovery, development, and operationsof dynamical systems. As such, modeling and simulation professionals intrinsically encounter problemsthat have non-trivial complexity and scale traits. Inevitably the systems they encounter must be modeled,simulated, and evaluated. This panel presents some challenges in attracting talented individuals to pursueeducation and professional careers, continuing education to satisfy the current and future knowledge andpractices while advancing basic and applied research and development in modeling and simulation. Tohighlight modeling and simulation workforce development, panelists share thoughts borne out of extensiveprofessional and academic experiences at Intel®, Oak Ridge National Lab, MathWorks®, and AS

    Modelling human network behaviour using simulation and optimization tools: the need for hybridization

    Get PDF
    The inclusion of stakeholder behaviour in Operations Research / Industrial Engineering (OR/IE) models has gained much attention in recent years. Behavioural and cognitive traits of people and groups have been integrated in simulation models (mainly through agent-based approaches) as well as in optimization algorithms. However, especially the influence of relations between different actors in human networks is a broad and interdisciplinary topic that has not yet been fully investigated. This paper analyses, from an OR/IE point of view, the existing literature on behaviour-related factors in human networks. This review covers different application fields, including: supply chain management, public policies in emergency situations, and Internet-based human networks. The review reveals that the methodological approach of choice (either simulation or optimization) is highly dependent on the application area. However, an integrated approach combining simulation and optimization is rarely used. Thus, the paper proposes the hybridization of simulation with optimization as one of the best strategies to incorporate human behaviour in human networks and the resulting uncertainty, randomness, and dynamism in related OR/IE models.Peer Reviewe

    Patient flow model using hybrid discrete event and agent-based simulation in emergency department

    Get PDF
    The hospital emergency department (ED) is one of the most crucial hospital areas. ED plays a key role in promoting hospitals’ goals of enhancing service efficiency. ED is a complex system due to the stochastic behaviour including the operational patient flow, the unpredictability of the care required by patients, and the department’s complex nature. ED operational patient flow refers to the transferring of patients throughout various locations in specific relation to a healthcare facility. Simulations are effective tools for analysing and optimizing complex ED operational patient flow. Although existing ED operational patient flow simulation models have substantially improved ED operational patient performance in terms of ensuring patient satisfaction and effective treatment, many deficiencies continue to exist in addressing the key challenge in ED, namely, patient throughput issue which is indicated to the long patient throughput time in ED. The patient throughput time issue is affected by causative factors, such as waiting time, length of stay (LoS), and decision-making. This research aims to improve ED operational patient flow by proposing a new ED Operational Patient Flow Simulation Model (SIM-PFED) in order to address the reported key challenge of the patient throughput time. SIM-PFED introduces a new process for patient flow in ED on the basis of the newly proposed operational patient flow by combining discrete event simulation and agent-based simulation and applying a multi attribute decision making method, namely, the technique for order preference by similarity to the ideal solution (TOPSIS). Experiments were performed on four actual hospital ED datasets to assess the effectiveness of SIM-PFED. Experimental results revealed the superiority of SIM-PFED over other alternative models in reducing patient throughput time in ED by consuming less patient waiting time and having a shorter length of stay. The results of the experiments showed the improvement `of percentage in terms of patient throughput time (waiting time and LoS). SIM-PFED's waiting time proficiency is 35.45%, 89.21%, 87.64% and 86.00% advanced than Safety Simulation Model, ABS Model, IS-BDSF and SEDO-UCC correspondingly. In addition, the general average waiting time performance of SIM-PFED against the four models ascertains that the performance of SIM-PFED's is largely improved than that of the Safety Simulation Model, ABS Model, IS-BDSF and SEDO-UCC in regard to the waiting time at a percentage of 74.58%. SIM-PFED's LoS effectiveness is 74.4%, 85%, 91.6% and 87.4% higher than Safety Simulation Model, ABS Model, IS-BDSF and SEDO-UCC correspondingly. The general average LoS performance of SIM-PFED against the four models illustrated that the performance of SIM-PFED's is largely improved than that of the Safety Simulation Model, ABS Model, IS-BDSF and SEDO-UCC in regard to the LoS at a percentage of 85.6%.The findings also demonstrated the effectiveness of SIM-PFED in helping ED decision-makers select the best scenarios to be implemented in ED for ensuring minimal patient throughput time while being cost-effective

    An Intelligent Scheduling of Non-Critical Patients Admission for Emergency Department

    Get PDF
    The combination of the progressive growth of an aging population, increased life expectancy and a greater number of chronic diseases all contribute significantly to the growing demand for emergency medical care, and thus, causing saturation in Emergency Departments (EDs). This saturation is usually due to the admission of non-urgent patients, who constitute a high percentage of patients in an ED. The Agent-based Model (ABM) is one of the most important tools that helps to study complex systems and explores the emergent behavior of this type of department. Its simulation more accurately reflects the complexity of the operation of real systems. Our proposal is the design of an ABM to schedule the access of these non-critical patients into an ED, which can be useful for the service management dealing with the actual growing demand for emergency care. We suppose that a relocation of these non-critical patients within the expected input pattern, provided initially by historical records, enables a reduction in waiting time for all patients, and therefore, it will lead to an improvement in the quality of service. It would also allow us to avoid long waiting times. This research offers the availability of relevant knowledge for Emergency Department managers in order to help them make decisions to improve the quality of the service, in anticipation of the expected growing demand of the service in the very near future

    Assessing vulnerability and modelling assistance: using demographic indicators of vulnerability and agent-based modelling to explore emergency flooding relief response

    Get PDF
    Flooding is a significant concern for much of the UK and is recognised as a primary threat by most local councils. Those in society most often deemed vulnerable: the elderly, poor or sick, for example, often see their level of vulnerability increase during hazard events. A greater knowledge of the spatial distribution of vulnerability within communities is key to understanding how a population may be impacted by a hazard event. Vulnerability indices are regularly used – in conjunction with needs assessments and on-the-ground research – to target service provision and justify resource allocation. Past work on measuring and mapping vulnerability has been limited by a focus on income-related indicators, a lack of consideration of accessibility, and the reliance on proprietary data. The Open Source Vulnerability Index (OSVI) encompasses an extensive range of vulnerability indicators supported by the wider literature and expert validation and provides data at a sufficiently fine resolution that can identify vulnerable populations. Findings of the OSVI demonstrate the potential cascading impact of a flood hazard as it impacts an already vulnerable population: exacerbating pre-existing vulnerabilities, limiting capabilities and restricting accessibility and access to key services. The OSVI feeds into an agent-based model (ABM) that explores the capacity of the British Red Cross (BRC) to distribute relief during flood emergencies using strategies based upon the OSVI. A participatory modelling approach was utilised whereby the BRC were included in all aspects of the model development. The major contribution of this work is the novel synthesis of demographics analysis, vulnerability mapping and geospatial simulation. The project contributes to the growing understanding of vulnerability and response management within the NGO sector. It is hoped that the index and model produced will allow responder organisations to run simulations of similar emergency events and adjust strategic response plans accordingly

    Advances in Modeling and Management of Urban Water Networks

    Get PDF
    The Special Issue on Advances in Modeling and Management of Urban Water Networks (UWNs) explores four important topics of research in the context of UWNs: asset management, modeling of demand and hydraulics, energy recovery, and pipe burst identification and leakage reduction. In the first topic, the multi-objective optimization of interventions on the network is presented to find trade-off solutions between costs and efficiency. In the second topic, methodologies are presented to simulate and predict demand and to simulate network behavior in emergency scenarios. In the third topic, a methodology is presented for the multi-objective optimization of pump-as-turbine (PAT) installation sites in transmission mains. In the fourth topic, methodologies for pipe burst identification and leakage reduction are presented. As for the urban drainage systems (UDSs), the two explored topics are asset management, with a system upgrade to reduce flooding, and modeling of flow and water quality, with analyses on the transition from surface to pressurized flow, impact of water use reduction on the operation of UDSs, and sediment transport in pressurized pipes. The Special Issue also includes one paper dealing with the hydraulic modeling of an urban river with a complex cross-section

    Institutions and Economics of Water Scarcity and Droughts

    Get PDF
    This Special Issue opens a new field of research in certain emerging innovative instruments, because it provides an in-depth revision of the main aspects of institutions and instruments available for the management and governance of droughts and water scarcity. The key aspects that institutions may tackle not only include the increasing water scarcity in many regions around the world but also the increasing frequency and impact of droughts on economic and natural systems. Some of the included papers analyze critical issues, such as the state and future trends of water markets; the estimation of transaction costs when dealing with drought management; and the use of new instruments, such as insurance and water-rights entitlements, which include water security, water-pricing effects on the whole basin level, and intra- and inter-sectorial re-allocation. The important issues regarding non-conventional water supply and the governance of the new resources also feature as the focus of some of the contributions

    Coordinated Transit Response Planning and Operations Support Tools for Mitigating Impacts of All-Hazard Emergency Events

    Get PDF
    This report summarizes current computer simulation capabilities and the availability of near-real-time data sources allowing for a novel approach of analyzing and determining optimized responses during disruptions of complex multi-agency transit system. The authors integrated a number of technologies and data sources to detect disruptive transit system performance issues, analyze the impact on overall system-wide performance, and statistically apply the likely traveler choices and responses. The analysis of unaffected transit resources and the provision of temporary resources are then analyzed and optimized to minimize overall impact of the initiating event

    2009 International SWAT Conference Conference Proceedings

    Get PDF
    corecore