2,897 research outputs found

    Hybrid metaheuristic approach GA-SA for the buffer allocation problem that minimizes the work in process in open serial production lines

    Full text link
    [EN] The Buffer Allocation Problem (BAP) is a problem of combinatorial NP-Hard optimization in the design of production lines. This consists of defining the allocation of storage places (buffers) within a production line, in order to maximize the efficiency of the process. The methods of optimization have been reported with greater success in recent years are metaheuristic techniques. In this work, a hybrid approach is proposed that uses the metaheuristic techniques of Genetic Algorithms (GA) and Simulated Annealing (SA), with the objective of determining the required buffers that minimize the average work in process (WIP) in open serial production lines M/M/1/K. The evaluation is carried out with an analytical method of decomposition. The results obtained demonstrate the computational efficiency of the proposed hybrid algorithm with respect to a simple SA or GA.[ES] El problema de asignación del buffer (BAP, por sus siglas en inglés) es clasificado como un problema de optimización combinatorio NP-Duro en el diseño de las líneas de producción. Éste consiste en definir la asignación de lugares de almacenamiento (buffers) dentro de una línea de producción, con el fin de aumentar al máximo la eficiencia del proceso. Los métodos de optimización que han sido reportados con mayor éxito en los últimos años son las técnicas metaheurísticas. En este trabajo, se propone un enfoque híbrido que utiliza las técnicas metaheurísticas de: Algoritmos Genéticos (AG) y Recocido Simulado (RS), con el objetivo de determinar los buffers requeridos que minimicen el promedio de inventario en proceso (WIP, por sus siglas en inglés) en líneas de producción abiertas en serie M/M/1/K. La evaluación se realiza con un método analítico de descomposición. Los resultados obtenidos demuestran la eficiencia computacional del algoritmo híbrido propuesto con respecto a un RS o AG estándar.Se agradece al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el financiamiento de esta investigación con número de registro CVU: 375571.Hernández-Vázquez, JO.; Hernández-González, S.; Jiménez-García, JA.; Hernández-Ripalda, MD.; Hernández-Vázquez, JI. (2019). Enfoque híbrido metaheurístico AG-RS para el problema de asignación del buffer que minimiza el inventario en proceso en líneas de producción abiertas en serie. Revista Iberoamericana de Automática e Informática. 16(4):447-458. https://doi.org/10.4995/riai.2019.10883SWORD447458164Amiri, M., & Mohtashami, A. (2011). Buffer allocation in unreliable production lines based on design of experiments, simulation, and genetic algorithm. International Journal of Advanced Manufacturing Technology, 62, 371-383. https://doi.org/10.1007/s00170-011-3802-8Ariyani, A. K., Mahmudy, W. F., & Anggodo, Y. P. (2018). Hybrid genetic algorithms and simulated annealing for multi-trip vehicle routing problem with time windows. International Journal of Electrical and Computer Engineering, 8(6), 4713-4723. https://doi.org/10.11591/ijece.v8i6.pp4713-4723Blum, C., Blesa Aguilera, M. J., Roli, A., & Sampels, M. (2008). Hybrid metaheuristics an emerging approach to optimization, Springer, Berlin. https://doi.org/10.1007/978-3-540-78295-7Costa, A., Alfieri, A., Matta, A., & Fichera, S. (2015). A parallel tabu search for solving the primal buffer allocation problem in serial production systems. Computers & Operations Research, 97-112. https://doi.org/10.1016/j.cor.2015.05.013Cruz, F. R., Kendall, G., While, L., Duarte, A. R., & Brito, N. L. (2012). Throughput maximization of queueing networks with simultaneous minimization of servicer rates and buffers. Mathematical Problems in Engineering, 1-19. https://doi.org/10.1155/2012/692593Curry, G., & Feldman, R. (2009). Manufacturing Systems Modeling and Analysis, Springer, Berlin.Demir, L., Tunali, S., & Tursel Eliiyi, D. (2014). The state of the art on buffer allocation problem: a comprehensive survey. Journal of Intelligent Manufacturing, 25(3), 371-392. https://doi.org/10.1007/s10845-012-0687-9Demir, L., & Tunali, S. (2008). A new approach for optimal buffer allocation in unreliable production lines. Pcoceedings of 38th International Conference on Computers, (págs. 1962-1970).Dolgui, A., Eremeev, A. V., & Sigaev, V. S. (2007). HBBA: hybrid algorithm for buffer allocation in tandem production lines. Journal of Intelligent Manufacturing, 18, 411-420. https://doi.org/10.1007/s10845-007-0030-zGoldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning (Primera ed.), Addison-Wesley Professional, United States of America.Gutiérrez Pulido, H., & De la Vara Salazar, R. (2012). Análisis y diseño de experimentos (Tercera ed.), McGraw-Hill, México.Huilcapi, V., Lima, B., Blasco, X., & Herrero, J. M. (2018). Multi-objective optimization in modeling and control for rotary inverted pendulum. Revista Iberoamericana de Automática e Informática Industrial, 15(4), 363-373. https://doi.org/10.4995/riai.2018.8739Kose, S. Y., & Kilincci, O. (2015). Hybrid approach for buffer allocation in open serial production lines. Computers & Operations Research, 60, 67-78. https://doi.org/10.1016/j.cor.2015.01.009Kose, S. Y., & Kilincci, O. (2018). A multi-objective hybrid evolutionary approach for buffer allocation in open serial production lines. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1435-6Liu, C., & Tu, F. S. (1994). Buffer allocation via the genetic algorithm. In: Proceedings of 33rd conference on decision and control, 609-610.Mohtashami, A. (2014). A new hybrid method for buffer sizing and machine allocation in unreliable production and assembly lines with general distribution time-dependent parameters. International Journal of Advanced Manufacturing Technology, 74, 1577-1593. https://doi.org/10.1007/s00170-014-6098-7Nahas, N., & Nourelfath, M. (2018). Joint optimization of maintenance, buffers and machines in manufacturing lines. Engineering Optimization, 50(1), 37-54. https://doi.org/10.1080/0305215X.2017.1299716Nahas, N., Nourelfath, M., & Ait-Kadi, D. (2009). Selecting machines and buffers in unreliable series-parallel production lines. International Journal of Production Research, 47(14), 3741-3774. https://doi.org/10.1080/00207540701806883Nahas, N., Nourelfath, M., & Gendreau, M. (2014). Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks. International Journal of Production Economics, 154, 113-126. https://doi.org/10.1016/j.ijpe.2014.04.011Narasimhamu, K. L., Reddy, V. V., & Rao, C. (2014). Optimal buffer allocation in tandem closed queuing network with single server using PSO. Procedia Materials Science, 5, 2084-2089. https://doi.org/10.1016/j.mspro.2014.07.543Narasimhamu, K. L., Reddy, V. V., & Rao, C. (2015). Optimization of buffer allocation in manufacturing system using particle swarm optimization. International Review on Modelling and Simulations, 8(2). https://doi.org/10.15866/iremos.v8i2.5666Ortiz-Quisbert, M. E., Duarte-Mermoud, M. A., Milla, F., & Castro-Linares, R. (2016). Fractional adaptive control optimized by genetic algorithms, applied to automatic voltage regulators. Revista Iberoamericana de Automática e Informática industrial, 13(4), 403-409. https://doi.org/10.1016/j.riai.2016.07.004Papadopoulos, C. T., O'Kelly, M. E., Vidalis, M. J., & Spinellis, D. (2009). Analysis and design of discrete part production lines. New York: Springer. https://doi.org/10.1007/978-0-387-89494-2_2Papadopoulos, H. T., & Vidalis, M. I. (2001). Minimizing WIP inventory in reliable production lines. International Journal of Production Economics, 70, 185-197. https://doi.org/10.1016/S0925-5273(00)00056-6Rodríguez-Blanco, T., Sarabia, D., & De Prada, C. (2018). Real-time optimization using the modifier adaptation methodology. Revista Iberoamericana de Automática e Informática industrial, 15(2), 133-144. https://doi.org/10.4995/riai.2017.8846Shi, L., & Men, S. (2003). Optimal buffer allocation in production lines. IIE Transactions, 35, 1-10. https://doi.org/10.1080/07408170304431Shortle, J., Thompson, J., Gross, D., & Harris, C. (2018). Fundamentals of Queueing Theory (Fifth ed.), Wiley, United States of America. https://doi.org/10.1002/9781119453765Spinellis, D. D., & Papadopoulos, C. T. (2000a). A simulated annealing approach for buffer allocation in reliable production lines. Annals of Operations Research, 93, 373-384. https://doi.org/10.1023/A:1018984125703Spinellis, D. D., & Papadopoulos, C. T. (2000b). Stochastic algorithms for buffer allocation in reliable production lines. Mathematical Problems in Engineering, 5, 441-458. https://doi.org/10.1155/S1024123X99001180Spinellis, D., Papadopoulos, C., & Smith, J. M. (2000). Large production line optimisation using simulated annealing. International Journal of Production Research, 38(3), 509-541. https://doi.org/10.1080/002075400189284Su, C., Shi, Y., & Dou, J. (2017). Multi-objective optimization of buffer allocation for remanufacturing system based on TS-NSGAII hybrid algorithm. Journal of Cleaner Production, 166, 756-770. https://doi.org/10.1016/j.jclepro.2017.08.064Takahashi, Y., Miyahara, H., & Hasegawa, T. (1980). An approximation method for open restricted queueing networks. Operations Research, 28(3), 594-602. https://doi.org/10.1287/opre.28.3.594Vergara, H. A., & Kim, D. S. (2009). A new method for the placement of buffers in serial production lines. International Journal of Production Research, 47(16), 4437-445. https://doi.org/10.1080/00207540801939022Wei, H., Li, S., Jiang, H., Hu, J., & Hu, J. (2018). Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with makespan criterion. Applied Sciences, 8(2621), 1-20. https://doi.org/10.3390/app8122621Weiss, S., Schwarz, J. A., & Stolletz, R. (2018). The buffer allocation problem in production lines: Formulations, solution methods, and instances. IISE Transactions. https://doi.org/10.1080/24725854.2018.144203

    A Development Of Optimal Buffer Allocation Determination Method For Μ-Unbalanced Unpaced Production Line

    Get PDF
    This research deals with a buffer allocation problem in an unpaced (asynchronous) μ-unbalanced production line. Kajian ini membincangkan masalah peruntukan pemampan di dalam talian pengeluaran tidak melangkah dengan ketidakseimbangan-μ

    A hybrid meta-heuristic approach for buffer allocation in remanufacturing environment

    Get PDF
    Remanufacturing system is complicated due to its stochastic nature. Random customer demand, return product rate and system unreliability contribute to this complexity. Remanufacturing systems with unreliable machines usually contain intermediate buffers which are used to decouple the machines, thereby, reducing mutual interference due to machine breakdowns. Intermediate buffers should be optimized to eliminate waste of resources and avoid loss of throughput. The Buffer Allocation Problem (BAP) deals with allocating optimally fixed amount of available buffers to workstations located in manufacturing or remanufacturing systems to achieve specific objectives. Optimal buffer allocation in manufacturing and remanufacturing systems not only minimizes holding cost and stock space, but also makes facilities planning and remanufacturing decisions to be effectively coordinated. BAP in a non-deterministic environment is certainly one of the most difficult optimization problems. Therefore, a mathematical framework is provided to model the dependence of throughput on buffer capacities. Obviously, based on the survey undertaken, not only there exists no algebraic relation between the objective function and buffer size but the current literature does not offer analytical results for buffer capacity design in remanufacturing environment. Decomposition principle, expansion method for evaluating system performance and an efficient hybrid Meta-heuristic search algorithm are implemented to find an optimal buffer allocation for remanufacturing system. The proposed hybrid Simulated Annealing (SA) with Genetic Algorithm (GA) is compared to pure SA and GA. The computational experiments show better quality, more accurate, efficient and reliable solutions obtained by the proposed hybrid algorithm. The improvement obtained is more than 4.18 %. Finally, the proposed method is applied on toner cartridge remanufacturing company as a case study, and the numerical results from hybrid algorithm are presented and compared with results from SA and GA

    Optimisation de la performance de systèmes multi-composants assujettis à des défaillances aléatoires

    Get PDF

    Buffer allocation in stochastic flow lines via sample-based optimization with initial bounds

    Full text link
    The allocation of buffer space in flow lines with stochastic processing times is an important decision, as buffer capacities influence the performance of these lines. The objective of this problem is to minimize the overall number of buffer spaces achieving at least one given goal production rate. We optimally solve this problem with a mixed-integer programming approach by sampling the effective processing times. To obtain robust results, large sample sizes are required. These incur large models and long computation times using standard solvers. This paper presents a Benders Decomposition approach in combination with initial bounds and different feasibilitycutsfortheBufferAllocationProblem,whichprovidesexactsolutionswhile reducing the computation times substantially. Numerical experiments are carried out to demonstrate the performance and the flexibility of the proposed approaches. The numerical study reveals that the algorithm is capable to solve long lines with reliable and unreliable machines, including arbitrary distributions as well as correlations of processing times

    Research Trends and Outlooks in Assembly Line Balancing Problems

    Get PDF
    This paper presents the findings from the survey of articles published on the assembly line balancing problems (ALBPs) during 2014-2018. Before proceeding a comprehensive literature review, the ineffectiveness of the previous ALBP classification structures is discussed and a new classification scheme based on the layout configurations of assembly lines is subsequently proposed. The research trend in each layout of assembly lines is highlighted through the graphical presentations. The challenges in the ALBPs are also pinpointed as a technical guideline for future research works
    corecore