490 research outputs found

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    Timing estimation and resynchronization for amplify-and-forward communication systems

    Get PDF
    This paper proposes a general framework to effectively estimate the unknown timing and channel parameters, as well as design efficient timing resynchronization algorithms for asynchronous amplify-and-forward (AF) cooperative communication systems. In order to obtain reliable timing and channel parameters, a least squares (LS) estimator is proposed for initial estimation and an iterative maximum-likelihood (ML) estimator is derived to refine the LS estimates. Furthermore, a timing and channel uncertainty analysis based on the CramrRao bounds (CRB) is presented to provide insights into the system uncertainties resulted from estimation. Using the parameter estimates and uncertainty information in our analysis, timing resynchronization algorithms that are robust to estimation errors are designed jointly at the relays and the destination. The proposed framework is developed for different AF systems with varying degrees of timing misalignment and channel uncertainties and is numerically shown to provide excellent performances that approach the synchronized case with perfect channel information. © 2006 IEEE.published_or_final_versio

    Timing synchronization in decode-and-forward cooperative communication systems

    Get PDF
    Cooperative communication systems have attracted much attention recently due to their desirable performance gain while using single antenna terminals. This paper addresses the joint timing and channel estimation problem, and furthermore the resynchronization of multiple timing offsets in a cooperative relay system. The estimations of timing and channel are conducted in two phases and the associated Cramér-Rao bounds (CRB) are derived for both phases. It is demonstrated that the conventional CRB is not valid for timing parameters under fading conditions, and a new bound called Weighted Bayesian CRB is proposed. With the timing and channel estimates, a general framework of the resynchronization filter design is developed in order to compensate the multiple timing offsets at the destination. The proposed methods are applied to different scenarios with varying degrees of timing misalignment and are numerically shown to provide excellent performances that approach the perfectly synchronized case. © 2009 IEEE.published_or_final_versio

    Adaptive MMSE Multiuser Detection (A-MMSE-MUD) in Asynchronous Cooperative CDMA Networks

    Get PDF

    Adaptive MMSE Multiuser Detection (A-MMSE-MUD) in Asynchronous Cooperative CDMA Networks

    Get PDF

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Cooperative Relaying and Resource Allocation in Future-Generation Cellular Networks

    Get PDF
    Driven by the significant consumer demand for reliable and high data rate communications, the future-generation cellular systems are expected to employ cutting-edge techniques to improve the service provisioning at substantially reduced costs. Cooperative relaying is one of the primary techniques due to its ability to improve the spectrum utilization by taking advantage of the broadcast nature of wireless signals. This dissertation studies the physical layer cooperative relaying technique and resource allocation schemes in the cooperative cellular networks to improve the spectrum and energy efficiency from the perspectives of downlink transmission, uplink transmission and device-to-device transmission, respectively. For the downlink transmission, we consider an LTE-Advanced cooperative cellular network with the deployment of Type II in-band decode-and-forward relay stations (RSs) to enhance the cell-edge throughput and to extend the coverage area. This type of relays can better exploit the broadcast nature of wireless signals while improving the utilization of existing allocated spectral resources. For such a network, we propose joint orthogonal frequency division multiplexing (OFDM) subcarrier and power allocation schemes to optimize the downlink multi-user transmission efficiency. Firstly, an optimal power dividing method between eNB and RS is proposed to maximize the achievable rate on each subcarrier. Based on this result, we show that the optimal joint resource allocation scheme for maximizing the overall throughput is to allocate each subcarrier to the user with the best channel quality and to distribute power in a water-filling manner. Since the users' Quality of Service (QoS) provision is one of the major design objectives in cellular networks, we further formulate a lexicographical optimization problem to maximize the minimum rate of all users while improving the overall throughput. A sufficient condition for optimality is derived. Due to the complexity of searching for the optimal solution, we then propose an efficient, low-complexity suboptimal joint resource allocation algorithm, which outperforms the existing suboptimal algorithms that simplify the joint design into separate allocation. Both theoretical and numerical analyses demonstrate that our proposed scheme can drastically improve the fairness as well as the overall throughput. As the physical layer uplink transmission technology for LTE-Advanced cellular network is based on single carrier frequency division multiple access (SC-FDMA) with frequency domain equalization (FDE), this dissertation further studies the uplink achievable rate and power allocation to improve the uplink spectrum efficiency in the cellular network. Different from the downlink OFDM system, signals on all subcarriers in the SC-FDMA system are transmitted sequentially rather than in parallel, thus the user's achievable rate is not simply the summation of the rates on all allocated subcarriers. Moreover, each user equipment (UE) has its own transmission power constraint instead of a total power constraint at the base station in the downlink case. Therefore, the uplink resource allocation problem in the LTE-Advanced system is more challenging. To this end, we first derive the achievable rates of the SC-FDMA system with two commonly-used FDE techniques, zero-forcing (ZF) equalization and minimum mean square error (MMSE) equalization, based on the joint superposition coding for cooperative relaying. We then propose optimal power allocation schemes among subcarriers at both UE and RS to maximize the overall throughput of the system. Theoretical analysis and numerical results are provided to demonstrate a significant gain in the system throughput by our proposed power allocation schemes. Besides the physical layer technology, the trend of improving energy efficiency in future cellular networks also motivates the network operators to continuously bring improvements in the entire network infrastructure. Such techniques include efficient base station (BS) redesign, opportunistic transmission such as device-to-device and cognitive radio communications. In the third part of this dissertation, we explore the potentials of employing cooperative relaying in a green device-to-device communication underlaying cellular network to improve the energy efficiency and spectrum utilization of the system. As the green base station is powered by sustainable energy, the design objective is to enhance both sustainability and efficiency of the device-to-device communication. Specifically, we first propose optimal power adaptation schemes to maximize the network spectrum efficiency under two practical power constraints. We then take the dynamics of the charging and discharging processes of the energy buffer at the BS into consideration to ensure the network sustainability. To this end, the energy buffer is modeled as a G/D/1 queue where the input energy has a general distribution. Power allocation schemes are proposed based on the statistics of the energy buffer to further enhance the network efficiency and sustainability. Theoretical analysis and numerical results are presented to demonstrate that our proposed power allocation schemes can improve the network throughput while maintaining the network sustainability at a certain level. Our analyses developed in this dissertation indicate that the cooperative transmission based on cooperative relaying can significantly improve the spectrum efficiency and energy efficiency of the cellular network for downlink transmission, uplink transmission and device-to-device communication. Our proposed cooperative relaying technique and resource allocation schemes can provide efficient solutions to practical design and optimization of future-generation cellular networks
    • …
    corecore