839 research outputs found

    Accuracy vs. Complexity for mmWave Ray-Tracing: A Full Stack Perspective

    Full text link
    The millimeter wave (mmWave) band will provide multi-gigabits-per-second connectivity in the radio access of future wireless systems. The high propagation loss in this portion of the spectrum calls for the deployment of large antenna arrays to compensate for the loss through high directional gain, thus introducing a spatial dimension in the channel model to accurately represent the performance of a mmWave network. In this perspective, ray-tracing can characterize the channel in terms of Multi Path Components (MPCs) to provide a highly accurate model, at the price of extreme computational complexity (e.g., for processing detailed environment information about the propagation), which limits the scalability of the simulations. In this paper, we present possible simplifications to improve the trade-off between accuracy and complexity in ray-tracing simulations at mmWaves by reducing the total number of MPCs. The effect of such simplifications is evaluated from a full-stack perspective through end-to-end simulations, testing different configuration parameters, propagation scenarios, and higher-layer protocol implementations. We then provide guidelines on the optimal degree of simplification, for which it is possible to reduce the complexity of simulations with a minimal reduction in accuracy for different deployment scenarios.Comment: 31 pages, 14 figures, 1 table. This paper has been submitted to IEEE for publication. Copyright IEEE 2020. Please cite it as: Mattia Lecci, Paolo Testolina, Michele Polese, Marco Giordani, Michele Zorzi, "Accuracy vs. Complexity for mmWave Ray-Tracing: A Full Stack Perspective.'

    Mobility Solutions for 5G New Radio over Low-Earth Orbit Satellite Networks

    Get PDF
    • …
    corecore